Что называют действующим значением силы переменного тока

Что называют действующим значением силы переменного тока

Действующее (эффективное) значение переменного тока равно величине такого постоянного тока, который за время, равное одному периоду переменного тока, произведёт такую же работу (тепловой или электродинамический эффект), что и рассматриваемый переменный ток.

В современной литературе чаще используется математическое определение этой величины — среднеквадратичное значение переменного тока. Иначе говоря, действующее значение переменного тока можно определить по формуле:

I = 1 T ∫ 0 T i 2 d t . <displaystyle I=<sqrt <<frac <1>>int _<0>^i^<2>dt>>.>

Содержание

Действующее значение в типичных случаях [ править | править код ]

Приведены формулы для электрического тока. Аналогичным образом определяются действующие значения ЭДС и напряжения.

Синусоида [ править | править код ]

I = 1 2 ⋅ I m ≈ 0,707 ⋅ I m , <displaystyle I=<frac <1><sqrt <2>>>cdot I_approx 0<,>707cdot I_,>

Прямоугольная форма [ править | править код ]

Для тока, имеющего форму однополярного прямоугольного импульса, действующее значение тока зависит от скважности:

I = I m D , <displaystyle I=I_<sqrt >,>

В частности, для тока, имеющего форму однополярного меандра (коэффициент заполнения 0,5):

I = I m 0 , 5 ≈ 0 , 707 ⋅ I m . <displaystyle I=I_<sqrt <0,5>>approx 0,707cdot I_.>

Для тока, имеющего форму двухполярного меандра:

I = I m . <displaystyle I=I_.>

Треугольная форма [ править | править код ]

Для тока треугольной и пилообразной формы (независимо от того, меняется ли направление тока):

I = 1 3 ⋅ I m ≈ 0,577 ⋅ I m . <displaystyle I=<frac <1><sqrt <3>>>cdot I_approx 0<,>577cdot I_.>

Трапециевидная форма [ править | править код ]

Для тока трапециевидной формы действующее значение можно определить разбив период на отрезки положительного фронта, действия максимального значения и отрицательного фронта:

I = I m t 1 + 3 t 2 + t 3 3 T , <displaystyle I=I_<sqrt <frac <1>+3t_<2>+t_<3>><3T>>>,>

Дугообразная форма [ править | править код ]

Для тока имеющего форму дуги (половины окружности):

I = I m 2 3 ≈ 0,816 ⋅ I m . <displaystyle I=I_<sqrt <frac <2><3>>>approx 0<,>816cdot I_.>

Дополнительные сведения [ править | править код ]

В англоязычной технической литературе для обозначения действующего значения употребляется термин effective value — эффективное значение. Также применяется аббревиатура RMS или rmsroot mean square — среднеквадратичное (значение).

Электроизмерительные приборы (амперметры, вольтметры) для измерения в цепях переменного тока обычно градуируются так, чтобы их показания соответствовали действующему значению синусоидального тока или напряжения. При измерении несинусоидальных токов и напряжений приборы различных систем могут давать разные показания [1] .

Читайте также:  Выделение текста в ячейке excel

Действующее (эффективное) значение переменного тока равно величине такого постоянного тока, который за время, равное одному периоду переменного тока, произведёт такую же работу (тепловой или электродинамический эффект), что и рассматриваемый переменный ток.

В современной литературе чаще используется математическое определение этой величины — среднеквадратичное значение переменного тока. Иначе говоря, действующее значение переменного тока можно определить по формуле:

I = 1 T ∫ 0 T i 2 d t . <displaystyle I=<sqrt <<frac <1>>int _<0>^i^<2>dt>>.>

Содержание

Действующее значение в типичных случаях [ править | править код ]

Приведены формулы для электрического тока. Аналогичным образом определяются действующие значения ЭДС и напряжения.

Синусоида [ править | править код ]

I = 1 2 ⋅ I m ≈ 0,707 ⋅ I m , <displaystyle I=<frac <1><sqrt <2>>>cdot I_approx 0<,>707cdot I_,>

Прямоугольная форма [ править | править код ]

Для тока, имеющего форму однополярного прямоугольного импульса, действующее значение тока зависит от скважности:

I = I m D , <displaystyle I=I_<sqrt >,>

В частности, для тока, имеющего форму однополярного меандра (коэффициент заполнения 0,5):

I = I m 0 , 5 ≈ 0 , 707 ⋅ I m . <displaystyle I=I_<sqrt <0,5>>approx 0,707cdot I_.>

Для тока, имеющего форму двухполярного меандра:

I = I m . <displaystyle I=I_.>

Треугольная форма [ править | править код ]

Для тока треугольной и пилообразной формы (независимо от того, меняется ли направление тока):

I = 1 3 ⋅ I m ≈ 0,577 ⋅ I m . <displaystyle I=<frac <1><sqrt <3>>>cdot I_approx 0<,>577cdot I_.>

Трапециевидная форма [ править | править код ]

Для тока трапециевидной формы действующее значение можно определить разбив период на отрезки положительного фронта, действия максимального значения и отрицательного фронта:

I = I m t 1 + 3 t 2 + t 3 3 T , <displaystyle I=I_<sqrt <frac <1>+3t_<2>+t_<3>><3T>>>,>

Дугообразная форма [ править | править код ]

Для тока имеющего форму дуги (половины окружности):

I = I m 2 3 ≈ 0,816 ⋅ I m . <displaystyle I=I_<sqrt <frac <2><3>>>approx 0<,>816cdot I_.>

Дополнительные сведения [ править | править код ]

В англоязычной технической литературе для обозначения действующего значения употребляется термин effective value — эффективное значение. Также применяется аббревиатура RMS или rmsroot mean square — среднеквадратичное (значение).

Читайте также:  Taskeng exe как удалить вирус

Электроизмерительные приборы (амперметры, вольтметры) для измерения в цепях переменного тока обычно градуируются так, чтобы их показания соответствовали действующему значению синусоидального тока или напряжения. При измерении несинусоидальных токов и напряжений приборы различных систем могут давать разные показания [1] .

Значение периодического тока, равное такому значению постоянного тока, который за время одного периода произведет тот же самый тепловой или электродинамический эффект, что и периодический ток, называют действующим значением периодического тока:

,

Аналогично определяются действующие значения ЭДС и напряжения.

Синусоидально изменяющийся ток

Из всех возможных форм периодических токов наибольшее распространение получил синусоидальный ток. По сравнению с другими видами тока синусоидальный ток имеет то преимущество, что позволяет в общем случае наиболее экономично осуществлять производство, передачу, распределение и использование электрической энергии. Только при использовании синусоидального тока удается сохранить неизменными формы кривых напряжений и токов на всех участках сложной линейной цепи. Теория синусоидального тока является ключом к пониманию теории других цепей.

Изображение синусоидальных эдс, напряжений и токов на плоскости декартовых координат

Синусоидальные токи и напряжения можно изобразить графически, записать при помощи уравнений с тригонометрическими функциями, представить в виде векторов на декартовой плоскости или комплексными числами.

Приведенным на рис. 1, 2 графикам двух синусоидальных ЭДС е1 и е2 соответствуют уравнения:

.

Значения аргументов синусоидальных функций иназываютсяфазами синусоид, а значение фазы в начальный момент времени (t=0): и начальной фазой ( ).

Величину , характеризующую скорость изменения фазового угла, называютугловой частотой. Так как фазовый угол синусоиды за время одного периода Т изменяется на рад., то угловая частота есть, гдеf– частота.

При совместном рассмотрении двух синусоидальных величин одной частоты разность их фазовых углов, равную разности начальных фаз, называют углом сдвига фаз.

.

Векторное изображение синусоидально изменяющихся величин

На декартовой плоскости из начала координат проводят векторы, равные по модулю амплитудным значениям синусоидальных величин, и вращают эти векторы против часовой стрелки (в ТОЭ данное направление принято за положительное) с угловой частотой, равной w. Фазовый угол при вращении отсчитывается от положительной полуоси абсцисс. Проекции вращающихся векторов на ось ординат равны мгновенным значениям ЭДС е1 и е2 (рис. 3). Совокупность векторов, изображающих синусоидально изменяющиеся ЭДС, напряжения и токи, называют векторными диаграммами. При построении векторных диаграмм векторы удобно располагать для начального момента времени (t=0), что вытекает из равенства угловых частот синусоидальных величин и эквивалентно тому, что система декартовых координат сама вращается против часовой стрелки со скоростью w. Таким образом, в этой системе координат векторы неподвижны (рис. 4). Векторные диаграммы нашли широкое применение при анализе цепей синусоидального тока. Их применение делает расчет цепи более наглядным и простым. Это упрощение заключается в том, что сложение и вычитание мгновенных значений величин можно заменить сложением и вычитанием соответствующих векторов.

Читайте также:  Магазин электроники в финляндии гиганти на русском

Пусть, например, в точке разветвления цепи (рис. 5) общий ток равен сумме токовидвух ветвей:

.

Каждый из этих токов синусоидален и может быть представлен уравнением

и.

Результирующий ток также будет синусоидален:

.

Определение амплитудыи начальной фазыэтого тока путем соответствующих тригонометрических преобразований получается довольно громоздким и мало наглядным, особенно, если суммируется большое число синусоидальных величин. Значительно проще это осуществляется с помощью векторной диаграммы. На рис. 6 изображены начальные положения векторов токов, проекции которых на ось ординат дают мгновенные значения токов дляt=0. При вращении этих векторов с одинаковой угловой скоростью w их взаимное расположение не меняется, и угол сдвига фаз между ними остается равным .

Так как алгебраическая сумма проекций векторов на ось ординат равна мгновенному значению общего тока, вектор общего тока равен геометрической сумме векторов токов:

.

Построение векторной диаграммы в масштабе позволяет определить значения ииз диаграммы, после чего может быть записано решение для мгновенного значенияпутем формального учета угловой частоты:.

Ссылка на основную публикацию
Adblock detector