Что такое промежутки монотонности функции

Что такое промежутки монотонности функции

Опр.: Функция называется возрастающей на некотором промежутке, если в этом промежутке каждому большему значению аргумента соответствует большее значение функции.

Опр.: Функция называется убывающей на некотором промежутке, если в этом промежутке каждому большему значению аргумента соответствует меньшее значение функции.

Как возрастающие. так и убывающие функции называются монотонными.

Если функция не является монотонной, то область ее определения можно разбить на конечное число промежутков монотонности, которые могут чередоваться с промежутками постоянства функции.

Монотонность функции y = f(x) характеризуется знаком ее первой производной f ¤ (x), а именно, если в некотором промежутке f ¤ (x) > 0, то функция возрастает в этом промежутке, если в некотором промежутке f ¤ (x) ¤ (x).

Отсюда получаем правило для нахождения промежутков монотонности функции y = f(x)

1. Найти нули и точки разрыва f ¤ (x).

2. Определить методом проб знак f ¤ (x) в промежутках, на которые полученные в п.1 точки делят область определения функции f(x).

Пример:

Найти промежутки монотонности функции у = — х 2 + 10х + 7

Данная функция определена на всей числовой оси., т.е. D(y) = R

Найдем f ¤ (x). y¢ = -2х +10

Точек разрыва производная y¢ не имеет;

Найдем точки, в которых y¢ = 0

Точка, в которой y¢ = 0 одна и она делит область определения функции на следующие промежутки: (– ∞,5) И (5 ,+ ∞), в каждом из которых y¢ сохраняет постоянный знак. Подставим в эти промежутки конкретные значения функции и определим знак y¢ на указанных промежутках, тогда:

на промежутке (– ∞,5] y¢ > 0,

Точки максимума и минимума функции называются точками ее экстремума.

Точка экстремума могут служить только критические точки 1-го рода., т.е. точки принадлежащие области определения функции в которых f ¤ (x) = 0 или терпит разрыв.

Читайте также:  Как войти в самсунг без аккаунта гугл

Точками экстремума являются лишь те из критических точек, при переходе через которые первая производная меняет знак. А именно:

Если при переходе через критическую точку x в положительном направлении f ¤ (x) меняет знак с + на — , то точка x есть точка максимума, если при переходе через критическую точку x в положительном направлении f ¤ (x) меняет знак с — на + , то точка x есть точка минимума.

Пример:

Исследовать функцию на монотонность, найти экстремумы функции.

У = х 3 –6х 2 + 9х

Данная функция определена на всей числовой оси., т.е. D(y) = R

Найдем f ¤ (x). y¢ = 3 х 2 –12х +9

Точек разрыва производная y¢ не имеет;

Найдем точки, в которых y¢ = 0

3 х 2 –12х +9 =0 Найдем корни этого уравнения

y¢ обращается в 0 при х1 = 1, х2 = 3,

Точки, в которой y¢ = 0 делят область определения функции на следующие промежутки:

(– ∞,1), [1,3] И (3 ,+ ∞), в каждом из которых y¢ сохраняет постоянный знак. Подставим в эти промежутки конкретные значения функции и определим знак y¢ на указанных промежутках, тогда:

на промежутке (– ∞,1] y¢ > 0,

на промежутке [1,3] y¢ 0,

Следовательно на промежутках (– ∞,1]и[3 ,+ ∞) функция возрастает, а на промежутке [1,3]функция убывает.

Точка х=1 является точкой максимума функции. Точка х=3 является точкой минимума функции.

Найдем значения умах и умin функции. Для этого подставим в формулу функции значения х=3 и х=1

Ответ или решение 1

Вспомним определение промежутков монотонности функции и как их определить.

Промежутки монотонности функции y = f (x) — это такие интервалы значений аргумента х, при которых функция y = f (x) возрастает либо убывает.

Чтобы определить промежутки монотонности функции f(x) потребуется:

1) найти область определения функции D (f);

Читайте также:  Привести js в читаемый вид

2) найти производную для выбранной функции;

3) найти критические точки, при условии равенства нулю производной f `(x) = 0 либо при условии, что производная f `(x) не существует;

4) затем разделить с помощью критических точек область определения функции на сегменты и выяснить знак производной функции на каждом из них.

На интервалах где производная положительная функция возрастает, а где отрицательная — убывает.

Промежутки монотонности функции y = f (x) — это такие интервалы значений аргумента х, при которых функция y = f (x) возрастает либо убывает.

Для определения промежутков монотонности функции f(x) требуется:

2) выполнить расчет производной для выбранной функции;

3) узнать критические точки при условии равенства нулю производной f `(x) = 0 либо при условии, что производная f `(x) не существует;

4) поделить критическими точками область определения на сегменты, в каждом из которых выяснить знак производной.

На интервалах где производная положительная функция возрастает, а где отрицательная — убывает.

Исследуем функцию y = x 3 на монотонность на всей числовой прямой.

Делаем вывод, функция y = x 3 возрастает на всей действительной оси.

Ссылка на основную публикацию
Adblock detector