Что значит dx в интегралах

Что значит dx в интегралах

Здравствуйте, дорогие студенты вуза Аргемоны!

Мы с вами закончили подкурс, посвящённый непосредственно функциям, а теперь переходим к интегралам. И оставшиеся два модуля будут посвящены именно им.
Для начала нам, конечно, необходимо будет ознакомиться с самим заклинанием "Интеграл". Постараюсь вам рассказать про него как можно проще. Мы не будем вдаваться глубоко в механизм действия этого заклинания. Нам достаточно научиться им пользоваться в не самых сложных случаях.

Это заклинание по действию обратно заклинанию "производная", однако есть небольшие ньюансы. При действии заклинания "интеграл" получается не одна функция, а целое семейство (они ещё называются первообразными), которые отличаются друг от друга лишь наличием константы, обеспечивающей параллельный перенос функции по вертикали.

Если мы применим ко всему семейству таких функций F(x)+C (где C=const) заклинание "производная", то результатом будет функция f(x), потому что производная от константы равна 0 (C’=0).

Давайте рассмотрим более пристально заклинание "интеграл". Оно состоит из трёх частей:
— значка интеграла (∫),
— подынтегральной функции (f(x))
— и так называемого дифференциала dx, который нам будет очень хорошо помогать при выполнении заклинания.

Действие дифференциала чем-то похоже на действие заклинание "производная", потому что

Ну и, соответственно, чтобы занести какую-то функцию под дифференциал, надо вычислить её первоообразную

g(x)*dx=d(G(x)), где G(x) — одна из первоообразных функции g(x).

Понятно, что dx=d(x+2)=d(x-7), то есть добавлять константу в качестве слагаемого под дифференциал (если это нужно) можно безболезненно.

d(k*f(x))=k*d(f(x)), где k=const, то есть из-под дифференциала можно выносить множитель-константу. Или заносить, если это надо.

Не пугайтесь, если на данный момент вы смутно поняли объяснение. Дальше мы разберём всё подробнее, а пока представляю вам табличку интегралов основных элементарных функций (ТИОЭФ)

и основные правила вычисления интегралов (ОПВИ)

А теперь давайте на примерах изучим, как пользоваться этим заклинанием.

Видно, что интеграл подходит под формулу 6 ТИОЭФ, но, к сожалению, степень 2 и то, что под дифференциалом, не совпадает, а совпадать должно в обязательном порядке. Только тогда заклинание придёт в действие. Значит, нам сейчас надо сделать некие преобразования, чтобы достичь такого равновесия.

1-й способ. Пригоден для более опытных в таких преобразованиях магов.
Ставим под дифференциал 3х-1, но чтобы уравновесить всю конструкцию, нам надо всё поделить на 3

Читайте также:  Емиас инфо отменить запись

Если мы выполним заклинание "дифференциал", то получим наше исходное выражение

Значит, преобразование сделано верно.

Если не видно сразу, на что надо поделить или умножить, то просто делаем замену переменных. Вместо х введём другую переменную

Подставляем всё, применяем 1-е правило ОПВИ и получаем табличный интеграл. Вычислив его, необходимо сделать обратную замену

Замену полезно делать, чтобы избавиться от сложных выражений. Например, вот тут

В 7-ю степень возводить очень хлопотливо (чтобы всё привести к многочлену), поэтому делаем вот такую замену

Таким образом, степень 7 оказалась около простой переменной.

Очень интересный метод интегрирования по частям. И применяется часто. Он основан на формуле-заклинании

Видно, что под дифференциалом находится не х, как это бывает изначально, а какая-то функция (хотя в некоторых случаях и х может выступать в качестве функции). То есть мы часть подынтегральной функции забираем под дифференциал, а часть оставляем. В результате применения заклинания интегрирования по частям выражение под интегралом значительно упрощается.
Для примера рассмотрим вот такой интеграл

Видим, что e^x*dx=d(e^x). Поэтому загоняем функцию e^x под дифференциал и применяем заклинание интегрирования по частям. Степень икса понижается. То же самое делаем ещё раз, пока степень икса не понизится до 1

Применяется этот метод и когда есть не e^x, а какая-либо тригонометрическая функция совместно со степенным выражением.

Иногда в результате применения такого заклинания мы возвращаемся вроде как к началу, но с некоторым довеском. Например,

При работе с тригонометрическими функциями полезно применять небольшие заклинания, позволяющие понизить степень:

А также не забывать об основном тригонометрическом тождестве, которое позволяет при необходимости выразить одну функцию через другую

Ну, думаю, нам этих сведений вполне хватит для того, чтобы применять заклинание "интеграл" к несложным функциям.

А теперь домашнее задание.
Выберите, на свой вкус, 10 функций из предложенных и примените к ним заклинание "интеграл".

Отправляйте работы через ЛИЧНЫЙ КАБИНЕТ
Свои вопросы смело можете передать с Персефоной

Таблица интегралов представляет собой набор интегралов от различных функций, таких как:

Эти интегралы в основном от элементарных функций и эта таблица приведена ниже:

В колонках этой таблицы:

  • В этой таблице в первой колонке приведен интеграл и чему он равен
  • Во второй колонке таблицы находится описание этого интеграла в словах
  • В третье колонке приведены примеры, как же пользоваться калькулятором интегралов
Читайте также:  Как настроить микрофон и динамики в скайпе

Получается, что ваша задача здесь научиться не только пользоваться таблицей интегралов, но и научиться вычислять интегралы с помощью калькулятора онлайн на этом сайте kontrolnaya-rabota.ru. Сам калькулятор интегралов находится по ссылке решение интегралов онлайн. Самое интересное, он умеет выдавать не только ответ, но и подробное решение бесплатно!

Пожалуйста, пишите, что вам не понятно будет на почту mail@kontrolnaya-rabota.ru о недостатках данной таблицы, чтобы вы хотели видеть еще здесь.

Видео примеры по использованию таблицы

Неопределенные интегралы:

Определенные интегралы:

Решение интегралов – задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл. Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы?

Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать простейшие и другие интегралы и почему без этого никак нельзя обойтись в математике.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Изучаем понятие « интеграл »

Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц, но суть вещей не изменилась.

Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о пределах и производных, необходимые и для понимания интегралов, уже есть у нас в блоге.

Неопределенный интеграл

Пусть у нас есть какая-то функция f(x).

Неопределенным интегралом функции f(x) называется такая функция F(x), производная которой равна функции f(x).

Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как вычислять производные, читайте в нашей статье.

Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.

Простой пример:

Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями.

Читайте также:  Видеоадаптер nvidia geforce 9800 gt

Полная таблица интегралов для студентов

Определенный интеграл

Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.

В качестве примера представим себе график какой-нибудь функции.

Как найти площадь фигуры, ограниченной графиком функции? С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции. Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:


Точки а и b называются пределами интегрирования.

Бари Алибасов и группа

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Правила вычисления интегралов для чайников

Свойства неопределенного интеграла

Как решить неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.

  • Производная от интеграла равна подынтегральной функции:

  • Константу можно выносить из-под знака интеграла:

  • Интеграл от суммы равен сумме интегралов. Верно также для разности:

Свойства определенного интеграла

  • Линейность:

  • Знак интеграла изменяется, если поменять местами пределы интегрирования:

  • При любых точках a, b и с:

Как считать определенный интеграл? С помощью формулы Ньютона-Лейбница.

Мы уже выяснили, что определенный интеграл – это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:

Примеры решения интегралов

Ниже рассмотрим неопределенный интеграл и примеры с решением. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.

Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.

Ссылка на основную публикацию
Adblock detector