Что значит sdram на оперативке

Что значит sdram на оперативке

Большинство устройств оперативной памяти имеют различные интерфейсы и собственные рабочие частоты. Почти каждое вычислительное устройство нуждается в ОЗУ. Устройство (например, смартфоны, планшеты, настольные компьютеры, ноутбуки, графические калькуляторы, HD телевизоры, портативные игровые системы и т.д.). Объем ОЗУ разный для всех типов и моделей устройств. В основном вся оперативная память в служит одной и той же цели.

Известные типы ОЗУ:

  • Статическая RAM (SRAM)
  • Динамическое ОЗУ (DRAM)
  • Синхронное динамическое ОЗУ (SDRAM)
  • Синхронное динамическое ОЗУ с одной скоростью передачи данных (SDR SDRAM)
  • Синхронное динамическое ОЗУ с двойной скоростью передачи данных (DDR SDRAM, DDR2, DDR3, DDR4)
  • Синхронное динамическое ОЗУ с двойной скоростью передачи данных (GDDR SDRAM, GDDR2, GDDR3, GDDR4, GDDR5)
  • Флэш-память

Что такое оперативная память?

Оперативная память расшифровывается как "оперативное запоминающее устройство" или аббривиатурой "ОЗУ". Предоставляет компьютерам виртуальное пространство, необходимое для управления информацией и решения проблем в настоящий момент. Можно подумать что это бумага для повторного использования, на которой пишут карандашом заметки, цифры или рисунки.

Если не хватает места на бумаге, вы стираете то, что вам больше не нужно. Оперативная память работает аналогично, когда ей требуется больше места для работы с временной информацией (то есть с запущенным программным обеспечением или программами). Большие листы бумаги позволяют вам набрасывать больше и больше идей за раз, прежде чем стирать. Больше оперативной памяти внутри компьютеров разделяют информацию прежде чем стереть аналогичным сопособом.

Оперативная память имеет различные формы (то есть физическое соединение с вычислительными системами или взаимодействие с ними), емкости (измеряемые в МБ или ГБ), скорости (измеряемые в МГц или ГГц) и архитектуры. Эти и другие аспекты важно учитывать при обновлении систем с ОЗУ, поскольку компьютерные системы (например, аппаратные средства, материнские платы) должны придерживаться строгих критериев.

  • Компьютеры старого поколения вряд ли приспособят более современные типы технологий оперативной памяти
  • Память ноутбука не помещается на десктопах (и наоборот)
  • RAM не всегда обратно совместима
  • Система не может смешивать и сочетать разные типы/поколения ОЗУ вместе

Статическая RAM (SRAM)

SRAM — один из двух основных типов памяти (другой — DRAM), требует постоянного потока энергии для функционирования. Из-за постоянной мощности SRAM не нужно «обновлять», чтобы помнить о сохраняемых данных. Вот почему SRAM называется «статическим» — никаких изменений или действий (например, обновление) не требуется, чтобы сохранить данные нетронутыми. SRAM это энергозависимая память. Это означает что все данные, которые были сохранены, теряются после отключения питания.

Преимуществами использования SRAM (по сравнению с DRAM) считается низкое энергопотребление и высокая скорость доступа. Недостатками использования SRAM (по сравнению с DRAM) это меньшая емкость памяти и высокие затраты на производство.

Из-за этих характеристик SRAM используется в таких компонентах:

  • Кэш процессора (например, L1, L2, L3)
  • Буфер/кэш жесткого диска
  • Цифро-аналоговые преобразователи (ЦАП) на видеокартах

Динамическое ОЗУ (DRAM)

DRAM, один из двух основных типов памяти (другой — SRAM), требует периодического «обновления» мощности для функционирования. Конденсаторы, которые хранят данные в DRAM, постепенно разряжают энергию. Отсутствие энергии означает, что данные теряются. Поэтому DRAM называется «динамическим» — постоянные изменения или действия (например, обновление) необходимы для сохранения данных нетронутыми. DRAM также считается энергозависимой памятью. Это означает, что все сохраненные данные теряются при отключении питания.

Преимущества использования DRAM (по сравнению с SRAM) заключаются в низких затратах на производство и большей емкости памяти. Недостатками использования DRAM (по сравнению с SRAM) являются более медленные скорости доступа и высокое энергопотребление.

Из-за этих характеристик DRAM используется в таких устройствах:

  • Системная память
  • Видео графическая память

В 1990-х годах разработана расширенная динамическая ОЗУ с данными (EDO DRAM), за которой последовала ее эволюция, ОЗУ Burst EDO (BEDO DRAM). Эти типы памяти были привлекательны благодаря повышенной производительности/эффективности при меньших затратах. Но технология устарела в результате разработки SDRAM.

Синхронное динамическое ОЗУ (SDRAM)

SDRAM — это классификация DRAM, которая работает синхронно с тактовой частотой процессора. В начале ожидает тактового сигнала, прежде чем ответить на ввод данных (например, пользовательский интерфейс). DRAM считается асинхронным, так как немедленно реагирует на ввод данных. Но преимущество синхронной работы состоит в том, что ЦП может параллельно обрабатывать перекрывающиеся инструкции, также известные как «конвейерная обработка» — возможность получать (читать) новую инструкцию до того, как предыдущая инструкция полностью разрешена (запись).

Конвейерная обработка не влияет на время, необходимое для обработки инструкций, она позволяет одновременно выполнять больше инструкций. Обработка одной инструкции чтения и одной записи за такт приводит к более высокой общей скорости передачи/производительности ЦП. SDRAM поддерживает конвейеризацию благодаря делению памяти на отдельные участки, что и обусловило ее широкое предпочтение по сравнению с базовым DRAM.

Синхронное динамическое ОЗУ с одной скоростью передачи данных (SDR SDRAM)

SDR SDRAM — это расширенный термин для SDRAM — два типа — это одно и то же, но чаще всего называют просто SDRAM. «Единая скорость передачи данных» указывает, как память обрабатывает одну инструкцию чтения и одну запись за такт.

Сравнение между SDR SDRAM и DDR SDRAM:

  • DDR SDRAM считается разработкой второго поколения SDR SDRAM

Синхронное динамическое ОЗУ с двойной скоростью передачи данных (DDR SDRAM)

DDR SDRAM работает как SDR SDRAM, только в два раза быстрее. DDR SDRAM способна обрабатывать две инструкции чтения и две записи за такт (следовательно, «двойной»). Функция DDR SDRAM аналогична, и имеет физические различия (184 контакта и один паз на разъеме) по сравнению с SDR SDRAM (168 контактов и две выемки на разъеме). DDR SDRAM также работает при низком стандартном напряжении (2,5 В от 3,3 В), предотвращая обратную совместимость с SDR SDRAM.

  • DDR2 SDRAM — это эволюционное обновление до DDR SDRAM. Несмотря на удвоение скорости передачи данных (обработка двух команд чтения и двух команд записи за такт), DDR2 SDRAM работает быстрее, поскольку может работать на более высоких тактовых частотах. Стандартные (не разогнанные) модули памяти DDR работают с частотой 200 МГц, тогда как стандартные модули памяти DDR2 работают с частотой 533 МГц. DDR2 SDRAM работает при более низком напряжении (1,8 В) с большим количеством контактов (240), что предотвращает обратную совместимость.
  • DDR3 SDRAM повышает производительность по сравнению с DDR2 SDRAM благодаря улучшенной обработке сигналов (надежности), большей емкости памяти, более низкому энергопотреблению (1,5 В) и более высоким стандартным тактовым частотам (до 800 МГц). Хотя DDR3 SDRAM имеет то же количество контактов, что и DDR2 SDRAM (240), все остальные аспекты препятствуют обратной совместимости.
  • DDR4 SDRAM повышает производительность по сравнению с DDR3 SDRAM благодаря более продвинутой обработке сигналов (надежности), еще большей емкости памяти, еще более низкому энергопотреблению (1,2 В) и более высоким стандартным тактовым частотам (до 1600 МГц). DDR4 SDRAM использует 288-контактную конфигурацию, что также предотвращает обратную совместимость.
Читайте также:  Разделить экран на две части windows 10

Синхронное динамическое ОЗУ с двойной скоростью передачи данных (GDDR SDRAM)

GDDR SDRAM — это тип DDR SDRAM, специально разработанный для рендеринга видео графики, обычно в сочетании с выделенным графическим процессором (графическим процессором) на видеокарте. Современные компьютерные игры выходят за рамки невероятно реалистичной среды с высоким разрешением, часто требуя здоровенных системных характеристик и лучшего оборудования для видеокарт (особенно при использовании дисплеев с высоким разрешением 720p или 1080p).

Память видеокарты на чипах GDDR5 SDRAM

  • Подобно DDR SDRAM, GDDR SDRAM имеет собственную эволюционную линию (повышение производительности и снижение энергопотребления): GDDR2 SDRAM, GDDR3 SDRAM, GDDR4 SDRAM и GDDR5 SDRAM.

Несмотря на то, что у DDR ​​SDRAM есть похожие характеристики, GDDR SDRAM — не совсем то же самое. Существуют заметные различия в том, как работает GDDR SDRAM, в том что касается пропускной способности по сравнению с задержкой. Ожидается, что GDDR SDRAM будет обрабатывать огромные объемы данных (пропускную способность), но не обязательно на самых высоких скоростях (задержка).

Представьте себе шоссе с 16 полосами, установленным на 55 миль в час. Для сравнения, ожидается, что DDR SDRAM будет иметь низкую задержку, чтобы немедленно реагировать на процессор — вспомним двухполосную магистраль, установленную на 85 миль в час.

Флэш-память

Флэш-память — это тип энергонезависимого носителя данных, который сохраняет все данные после отключения питания. Несмотря на название, флэш-память ближе по форме и действию (то есть к хранилищу и передаче данных) к твердотельным накопителям, чем ранее упомянутые типы ОЗУ.

Флэш-память чаще используется в таких устройствах:

  • Флешки
  • Принтеры
  • Портативные медиаплееры
  • Карты памяти
  • Малая электроника/игрушки
  • PDAs

SDRAM (англ. Synchronous Dynamic Random Access Memory — синхронная динамическая память с произвольным доступом) — тип запоминающего устройства, использующегося в компьютере и других цифровых устройствах в качестве ОЗУ.

В отличие от других типов DRAM, использовавших асинхронный обмен данными, ответ на поступивший в устройство управляющий сигнал возвращается не сразу, а лишь при получении следующего тактового сигнала. Тактовые сигналы позволяют организовать работу SDRAM в виде конечного автомата, исполняющего входящие команды. При этом входящие команды могут поступать в виде непрерывного потока, не дожидаясь, пока будет завершено выполнение предыдущих инструкций (конвейерная обработка): сразу после команды записи может поступить следующая команда, не ожидая, когда данные окажутся записаны. Поступление команды чтения приведёт к тому, что на выходе данные появятся спустя некоторое количество тактов — это время называется задержкой и является одной из важных характеристик данного типа устройств.

Циклы обновления выполняются сразу для целой строки, в отличие от предыдущих типов DRAM, обновлявших данные по внутреннему счётчику, используя способ обновления по команде CAS перед RAS.

Содержание

История использования [ править | править код ]

Массовый выпуск SDRAM начался в 1993 году. Первоначально этот тип памяти предлагался в качестве альтернативы для дорогой видеопамяти (VRAM), однако вскоре SDRAM завоевал популярность и стал применяться в качестве ОЗУ, постепенно вытесняя другие типы динамической памяти. Последовавшие затем технологии DDR позволили сделать SDRAM ещё эффективнее. За разработкой DDR SDRAM последовали стандарты DDR2 SDRAM, DDR3 SDRAM и DDR4 SDRAM.

SDR SDRAM [ править | править код ]

Первый стандарт SDRAM с появлением последующих стандартов стал именоваться SDR (Single Data Rate — в отличие от Double Data Rate). За один такт принималась одна управляющая команда и передавалось одно слово данных. Типичными тактовыми частотами были 66, 100 и 133 МГц. Микросхемы SDRAM выпускались с шинами данных различной ширины (обычно 4, 8 или 16 бит), но как правило, эти микросхемы входили в состав 168-контактного модуля DIMM, который позволял прочитать или записать 64 бита (в варианте без контроля чётности) или 72 бита (с контролем чётности) за один такт.

Использование шины данных в SDRAM оказалось осложнено задержкой в 2 или 3 такта между подачей сигнала чтения и появлением данных на шине данных, тогда как во время записи никакой задержки быть не должно. Потребовалась разработка достаточно сложного контроллера, который не позволял бы использовать шину данных для записи и для чтения в один и тот же момент времени.

Управляющие сигналы [ править | править код ]

Команды, управляющие модулем памяти SDR SDRAM, подаются на контакты модуля по 7 сигнальным линиям. По одной из них подается тактовый сигнал, передние (нарастающие) фронты которого задают моменты времени, в которые считываются команды управления с остальных 6 командных линий. Имена (в скобках — расшифровки имен) шести командных линий и описания команд приведены ниже:

  • CKE (clock enable) — при низком уровне сигнала блокируется подача тактового сигнала на микросхему. Команды не обрабатываются, состояние других командных линий игнорируется.
  • /CS (chip select) — при высоком уровне сигнала все прочие управляющие линии, кроме CKE, игнорируются. Действует как команда NOP (нет оператора).
  • DQM (data mask) — высокий уровень на этой линии запрещает чтение/запись данных. При одновременно поданной команде записи данные не записываются в DRAM. Присутствие этого сигнала в двух тактах, предшествующих циклу чтения, приводит к тому, что данные не считываются из памяти.
  • /RAS (row address strobe) — несмотря на название, это не строб, а всего лишь один командный бит. Вместе с /CAS и /WE кодирует одну из 8 команд.
  • /CAS (column address strobe) — несмотря на название, это не строб, а всего лишь один командный бит. Вместе с /RAS и /WE кодирует одну из 8 команд.
  • /WE (write enable) — Вместе с /RAS и /CAS кодирует одну из 8 команд.
Читайте также:  У колонок глухой звук

Устройства SDRAM внутренне разделены на 2 или 4 независимых банка памяти. Входы адреса первого и второго банка памяти (BA0 и BA1) определяют, какому банку предназначена текущая команда.

Что такое SDRAM?

Синхронная оперативная память (SDRAM) — это первая технология оперативной памяти со случайным доступом (DRAM) разработанная для синхронизации работы памяти с тактами работы центрального процессора с внешней шиной данных. SDRAM основана на основе стандартной DRAM и работает почти также, как стандартная DRAM, но она имеет несколько отличительных характеристик, которые и делают ее более прогрессивной:

Синхронная работа SDRAM в отличие от стандартной и асинхронной DRAMs, имеет таймер ввода данных, таким образом системный таймер, который пошагово контролирует деятельность микропроцессора, может также управлять работой SDRAM. Это означает, что контроллер памяти знает точный цикл таймера на котором запрошенные данные будут обработаны. В результате, это освобождает процессор от необходимости находится в состоянии ожидания между моментами доступа к памяти.

Общие свойства SDRAM

  • Синхронизированна по тактам с CPU
  • Основана на стандартной DRAM, но значительно быстрее — вплоть до 4 раз
  • Специфические свойства:
    синхронное функционирование,
    чередование банков ячеек,
    возможность работы в пакетно-конвейерном режиме
  • Основной претендент для использования в качестве основной памяти в персональных компьютерах следующего поколения

Банки ячеек — это ячейки памяти внтри чипа SDRAM, которые разделяются на два, независимых банка ячеек. Поскольку оба банка могут быть задействованны одновременно, непрерывный поток данных может обеспечиваться простым переключением между банками. Этот метод называется чередованием, и он позволяет снизить общее количество циклов обращения к памяти и увеличить, в результате, скорость передачи данных. пакетный режим ускорения — это техника быстрой передачи данных, при которой автоматически генерируется блок данных (серия последовательных адресов), в каждый момент, когда процессор запрашивает один адрес. Исходя из предположения о том, что адрес следующих данных, которые будут запрошенных процессором, будет следующим, по отношению к предыдущему запрошенному адресу, который обычно истиный (это такое же предсказание, которое используется в алгоритме работы кэш-памяти). Пакетный режим может применятся как при операциях чтения (из памяти), так и при операциях записи (в память).

Теперь о фразе, что SDRAM более быстрая память. Даже при том, что SDRAM основана на стандартной DRAM архитектуре, комбинация указанных выше трех характеристик позволяет получит более быстрый и более эффективный процесс передачи данных. SDRAM уже может передавать данные со скоростью вплоть до 100MHz, что почти в четыре раза быстрее работы стандартной DRAM. Это ставит SDRAM в один ряд с более дорогой SRAM (статическое ОЗУ) используемой в качестве внешней кэш-памяти.

Почему именно SDRAM?

Поскольку оперативная память компьютера хранит в себе информацию, которая требуется CPU для функционирования, время прохождения данных между CPU и памятью является критичным. Более быстрый процессор может увеличить производительность системы только, если он не попадает в состояние цикла "поторопись и подожди", в то время, как остальная часть системы борется за то, чтобы оставаться в этом состоянии. К несчастью, с тех пор, как Intel представила пятнадцать лет тому назад свой процессор x286, обычные микросхемы памяти больше не в состоянии идти в ногу с чрезвычайно возросшей производительностью процессоров.

Стандартная, асинхронная DRAM работае без управления ввода таймером, который не требовался для передачи данных вплоть до второго десятилетия развития микропроцессоров. Начиная с этого момента, в системах с более быстрыми процессорами, которые используют стандартную DRAM необходимо принудительно устанавливать состояния ожидания (временные задержки), чтобы избежать переполнения памяти.Состояние ожидания, это когда микропроцессор приостанавливает исполнение всего, что он делает, пока другие компоненты не перейдут в режим приема команд.По этой причине, новые технологии памяти внедряются не только с целью увеличения скорости обмена, но также и с целью сокращения цикла поиска и выборки данных. Перед лицом возникших требований, изготовителями микросхем памяти были представлены серии новшеств, включающие память страничного режима, статического столбца, чередующиюся память, и FPM DRAM (быстространичного режима). Когда скорости процессоров возросли до частот 100MHz и выше, разработчики систем предложили для использования небольшой высокоскоростной внешний кэш SRAM (кэш второго уровня), а также новую быстродействующую память тиа EDO (расширенный доступ к данным) и BEDO (пакетно-расширенный доступ). FPM DRAM И EDO DRAM наиболее часто применяемая памяти в современных PC, но их асинхронная электрическая схема не предназначена для скоростей более 66MHz (максимум для BEDO). К несчастью, это фактор ограничивает сегодняшние системы, на основе процессоров типа Pentium с тактовой частотой более 133MHz, частотой по шине памяти величиной в 66MHz.

Первоначально, SDRAM была предложена в качестве более дешевой по стоимщсти альтернативы для дорогой видеопамяти VRAM (Video RAM), используемой в графических подсистемах. Тем не менее, она быстро получила применение во многих приложения и стала кандидатом номер один на роль основной памяти для следующих поколений PC.

Как работает SDRAM?

SDRAM производится на основе стандартной DRAM и работает также, как стандартная DRAM — осуществляя доступ с строкам и колонкам ячеек данных. Только SDRAM объединяет свои специфичные свойства синхронного функционирования банков ячеек, и пакетной работы, для эффективного устранения состояний задержек-ожидания. Когда процессору необходимо получить данные из оперативной памяти, он может получить их в требуемый момент. Таким образом, фактическое время обработки данных непосредственно не изменилось, в отличии от увеличения эффективности выборки и передачи данных. Для того, чтобы понять как SDRAM ускоряет процесс выборки и поиска данных в памяти, представьте себе, что центральный процессор имеет посыльного, который возит тележку по зданию оперативной памяти, и каждый раз ему нужно бросать или подбирать информацию. В здании оперативной памяти клерк, отвечающий за пересылку/получение информации, обычно тратит около 60ns, чтобы обработать запрос. Посыльный знает только, сколько требуется времени, чтобы обработать запрос, после того, как он получен. Но он не знает будет ли готов клерк, когда он приедет к нему, так что обычно он отводит немного времени на случай ошибки. Он ждет, пока клерк не будет готов получить запрос. Затем он ожидает обычное время, требующееся для обработки запроса. А затем, он задерживается, чтобы проверить, что запрошенные данные загружены в его тележку, прежде, чем отвезти тележку с данными обратно центральному процессору. Предположим, с другой стороны, что каждые 10 наносекунд пресылающий клерк в здании оперативной памяти должны быть снаружи и готовым получить другой запрос или ответить на запрос, который был получен ранее. Это делает процесс более эффективным, поскольку посыльный может прибыть именно в нужное время. Обработка запроса начинается в момент его получени. Информация посылается в CPU, когда она готова.

Какие преимущества в производительности?

Читайте также:  Доставка с amazon com в россию
FPM EDO BEDO SDRAM
Спецификация* -5, -6, -7 -5, -6, -7 -5, -6, -7 -10, -12, -15
Время доступа (ns) 50, 60, 70 50, 60, 70 52, 60, 70 50, 60, 70
Время цикла (ns) 30, 35, 40 20, 25, 30 15, 16.6, 20 10, 12, 15
Max скорость (MHz) 33, 28, 25 50, 40, 33 66, 60, 50 100, 80, 66
* Источник: EDN, 4 Jan 1996
[ спецификация для DRAM указывает время доступа (ns x10) ]
[ спецификация для SDRAMs указывает время цикла (ns) ]

Время доступа (комманды по адресу до выбора данных) одинаково для всех типов памяти, как видно из таблицы выше, поскольку их внутренняя архитектура в основном одинакова. Более показательным параметром является время цикла, который показывает, насколько быстро можгут быть осуществлены два последовательных доступа в чипе. Первый цикл считывания одинаков для всех четырех типов памяти — 50ns, 60ns или 70ns. Но реальные различия можно увидеть, посмотрев как быстро осуществляется второй, третий, четвертый, и т.д. цикл считывания. Для этого мы посмотрим на время цикла. Для "-6" FPM DRAM (60ns), второй цикл может быть осуществлен за 35ns. Сравните это с "-12" SDRAM (время доступа 60ns), когда второй цикл считывания проходит за 12ns. Это в три раза быстрее, и при этом, без какой-либо значительной переделки системы!

Наиболее значимые улучшения производительностьи при использовании SDRAM:

  • Более быстрая и более эффективная — почти в четыре раза производительнее, чем стандартная DRAM
  • Потенциально может заменить более дорогостоящую в использовании комбинацию EDO/L2-кэш, являюшуюся сейчас стандартом
  • "При синхронном" функционировании — избавляет от ограничений по времени и не тормозит работу новейших процессоров
  • Внутреннее чередование операций с двойными банками способствует непрерывному потоку данных
  • Возможность пакетного режима работы вплоть до полной страницы (используя до х16 микросхем)
  • Конвейерная адресация позволяет осуществлять доступ к запрошенным вторыми данными, до завершения обработки запрошенных первыми данными

Каково место SDRAM среди будущей памяти PC?

В настоящее время, FPM DRAM и EDO DRAM составляют большинство основного потока памяти PC, но ожидается, что SDRAM быстро станет основной альтернативой стандартной DRAM. Модернизация с FPM памяти до EDO (плюс L2-кэш) увеличивает производительность на 50%, а модернизируя с EDO до BEDO или SDRAM обеспечивает дополнительный прирост производительности еще на 50%. Все-таки, многие поставщики готовых систем видят BEDO лишь как промежуточный этап между EDO и SDRAM из-за присущих BEDO ограничений по скорости. SDRAM, которую они ожидают будет основной памятью при выборе.

Текущие потребности исходят от приложений с интенсивной графикой и требующих больших вычислений, таких, как малтимедиа, серверы, digital set-top boxex (системы для домашнего использования, совмещающие в себе телевизор, музыкальный центр, веб-броузер и т.д.), коммутаторы ATM, и другое сетевое и коммуникационное оборудование, требующие высокой пропускной способности и скоротей передачи данных. В недалеком будущем, тем не менее, промышленные эксперты прогнозируют, что SDRAM станет новым стандартом памяти в персональных компьютерах.

Следующий шаг в развитии SDRAM уже сделан, это DDR SDRAM или SDRAM II

И сделала этот шаг компания Samsung, известная как крупнейший производитель чипов памяти с маркировкой SEC. Официально о выпуске новой памяти будет объявлено в ближайшее время, но уже известны некоторые подробности. Имя новой памяти "Double Data Rate SDRAM" или просто "SDRAM II". Соль в том, что новая синхронная память может передавать данные по восходящему и падающиму уровню сигнала шины, что позволяет увеличить пропускную способность до 1.6 Гб/сек при частоте шины в 100MHz. Это позволит увеличить вдвое пропускную способность памяти по сравнению с существующей SDRAM. Заявлено, что новый чипсет VIA VP3 будет обеспечивать возможность использования новой памяти в системах.

Будте осторожны при выборе SDRAM для применения в системах на основе чипсета i440LX

Как показала практика, материнские платы, сделанные на основе последнего чипсета i440LX очень чувствительно относятся к типу применямой памяти SDRAM. Это связано с тем, что новая спецификация Intel SPD для SDRAM, определяет дополнительные требования к содержанию специальной информации о используемом модуле DIMM, которая должна находиться в маленьком по объемам и размерам элементе электронно-программируемой памяти EPROM, располагающейся на самом модуле памяти. Однако это не означает, что любой модуль SDRAM имеющий на себе EPROM, соответствует спецификации SPD, но в частности, это означает что модуль без EPROM этой спецификации точно не соответствует. Некоторые платы на базе набора i440LX требуют для работы только такие специальные модули, однако большинство существующих прекрасно функционируют и с обычными модулями SDRAM. Данный шаг Intel, по введения стандарта на модули синхронной памяти, связан, прежде всего, со стремлением обеспечить надежную работу и совместимость памяти с будущим чипсетом i440BX, который уже будет поддерживать шинную частоту в 100MHz.

Ссылка на основную публикацию
Adblock detector