Формула разложения на линейные множители

Формула разложения на линейные множители

Квадратный трехчлен ax 2 +bx+c можно разложить на линейные множители по формуле:

ax 2 +bx+c=a (x-x1)(x-x2), где x1, x2 — корни квадратного уравнения ax 2 +bx+c=0.

Разложить квадратный трехчлен на линейные множители:

Пример 1). 2x 2 -7x-15.

Решение. Найдем корни квадратного уравнения: 2x 2 -7x-15=0.

a=2; b=-7; c=-15. Это общий случай для полного квадратного уравнения. Находим дискриминант D.

D=b 2 -4ac=(-7) 2 -4∙2∙(-15)=49+120=169=13 2 >0; 2 действительных корня.

Применим формулу: ax 2 +bx+c=a (x-x1)(x-x2).

2x 2 -7x-15=2 (х+1,5)(х-5)=(2х+3)(х-5). Мы представили данный трехчлен 2x 2 -7x-15 в виде произведения двучленов 2х+3 и х-5.

Ответ: 2x 2 -7x-15=(2х+3)(х-5).

Пример 2). 3x 2 +2x-8.

Решение. Найдем корни квадратного уравнения:

a=3; b=2; c=-8. Это частный случай для полного квадратного уравнения с четным вторым коэффициентом (b=2). Находим дискриминант D1.

Применим формулу: ax 2 +bx+c=a (x-x1)(x-x2).

Мы представили трехчлен 3x 2 +2x-8 в виде произведения двучленов х+2 и 3х-4.

Ответ: 3x 2 +2x-8=(х+2)(3х-4).

Пример 3). 5x 2 -3x-2.

Решение. Найдем корни квадратного уравнения:

a=5; b=-3; c=-2. Это частный случай для полного квадратного уравнения с выполненным условием: a+b+c=0 (5-3-2=0). В таких случаях первый корень всегда равен единице, а второй корень равен частному от деления свободного члена на первый коэффициент:

Применим формулу: ax 2 +bx+c=a (x-x1)(x-x2).

5x 2 -3x-2=5 (х-1)(х+0,4)=(х-1)(5х+2). Мы представили трехчлен 5x 2 -3x-2 в виде произведения двучленов х-1 и 5х+2.

Ответ: 5x 2 -3x-2=(х-1)(5х+2).

Пример 4). 6x 2 +x-5.

Решение. Найдем корни квадратного уравнения:

a=6; b=1; c=-5. Это частный случай для полного квадратного уравнения с выполненным условием: a-b+c=0 (6-1-5=0). В таких случаях первый корень всегда равен минус единице, а второй корень равен минус частному от деления свободного члена на первый коэффициент:

Применим формулу: ax 2 +bx+c=a (x-x1)(x-x2).

Мы представили трехчлен 6x 2 +x-5 в виде произведения двучленов х+1 и 6х-5.

Ответ: 6x 2 +x-5=(х+1)(6х-5).

Пример 5). x 2 -13x+12.

Решение. Найдем корни приведенного квадратного уравнения:

x 2 -13x+12=0. Проверим, можно ли применить теорему Виета. Для этого найдем дискриминант и убедимся, что он является полным квадратом целого числа.

a=1; b=-13; c=12. Находим дискриминант D.

D=b 2 -4ac=13 2 -4∙1∙12=169-48=121=11 2 .

Применим теорему Виета: сумма корней должна быть равна второму коэффициенту, взятому с противоположным знаком, а произведение корней должно быть равно свободному члену:

Применим формулу: ax 2 +bx+c=a (x-x1)(x-x2).

Ответ: x 2 -13x+12=(х-1)(х-12).

Пример 6). x 2 -4x-6.

Решение. Найдем корни приведенного квадратного уравнения:

a=1; b=-4; c=-6. Второй коэффициент — четное число. Находим дискриминант D1.

Дискриминант не является полным квадратом целого числа, поэтому, теорема Виета нам не поможет, и мы найдем корни по формулам для четного второго коэффициента:

Применим формулу: ax 2 +bx+c=a (x-x1)(x-x2) и запишем ответ:

Друзья, для того, чтобы разложить квадратные трехчлены на множители, мы решали каждое квадратное уравнение рациональным способом. Все эти способы мы рассмотрели ранее в теме: «Решение полных квадратных уравнений».

Хочешь подготовиться к ОГЭ или ЕГЭ по математике на отлично?

Хочешь проверить свои силы и узнать результат насколько ты готов к ЕГЭ или ОГЭ?

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Для чего нужно раскладывать многочлен на множители?

Чтобы облегчить себе жизнь! После того как ты сделаешь это, выражение станет намного проще и ты сможешь с ним "разобраться"! Ты как бы делишь одну большую и сложную проблему, на несколько маленьких и простых и потом разбираешься с каждой маленькой проблемой по отдельности.

Как это сделать?

Прочитай эту статью и у тебя не останется вопросов по этой теме. Сначала мы разберем что означают все "сложные" слова, потом объясним все пять ВОЛШЕБНЫХ способов разложения многочлена на множители. И затем разберем на примерах как это делать.

Let’s dive right in. (Поехали!)

– это могут быть числа, переменные, произведения чисел и переменных, а так же переменные в степени (если забыл, что такое степень, посмотри тему «Степень и ее свойства» )

Все это — одночлены. Видишь у них нет знаков "+" или "-", как бы нет других членов.

Многочлен

— это выражение, состоящее из суммы (или разности) нескольких одночленов различного вида:

Что такое множители?

Так, ну давай по порядку. Как не трудно догадаться, слово «множитель» происходит от слова «умножать».

Возьмем, например, число , разложить его на множители означает расписать его в виде «умножения» или, как принято говорить в математике «произведения» множителей. Так мы можем получить, умножив на , а , в свою очередь, можно представить как произведение и .

Чтоб было более наглядно, обратимся к картинке:

На картинке мы видим пошаговое разложение на множители , те которые подчеркнуты – это множители, которые дальше разложить уже нельзя, т.е. их нельзя уже представить в виде произведения (можно конечно представить каждое из них как единица, умноженная на само число, но это нам ничего не дает).

Читайте также:  Final fantasy xv системные требования для пк

Я обещал, что картинка все разъяснит, ну разве из нее не понятно, что, , а ? Вот и я говорю, что элементарно!

Иными словами, . Тут , еще раз и – это и есть множители , на которые мы раскладываем.

Зачем нужно раскладывать многочлен на множители?

Это самый главный вопрос. Я уже говорил — чтобы облегчить тебе жизнь. Раскладывая многочлен на множители, ты упрощаешь выражение! Ты как бы делишь одну большую и сложную проблему, на несколько маленьких и простых и потом разбираешься с каждой маленькой проблемой по отдельности.

А теперь "официальное" определение.

Разложение многочлена на множители – тождественное преобразование, превращающее сумму в произведение нескольких множителей. При этом каждый множитель может быть как многочленом, так и одночленом.

Для чего нужно знать все пять способов?

Потому что нет универсального способа, подходящего для всех многочленов.

Давай посмотрим на каждый из них.

5 способов разложения многочлена на множители

1. Вынесение общего множителя за скобки

2. Использование формул сокращенного умножения.

3. Метод группировки.

Применяется если преобразование не очевидно.

Здесь, например, можно переставить второй член на другое место:

группируем члены парами, получаем:

4. Метод выделения полного квадрата.

Можно преобразовать многочлен и привести к виду разности квадратов, например и применить формулу сокращенного умножения

5. Разложение квадратного трехчлена на множители.

Квадратный трехчлен – многочлен вида

Теорема. Если квадратное уравнение имеет корни , то его можно записать в виде:

А теперь подробнее о каждом из 5-ти способов разложения на множители

1. Вынесение общего множителя за скобки

Это один из самых элементарных способов упростить выражение. Для применения этого метода давай вспомним распределительный закон умножения относительно сложения (не пугайся этих слов, ты обязательно знаешь этот закон, просто мог забыть его название).

Закон гласит: чтобы сумму двух чисел умножить на третье число, нужно каждое слагаемое умножить на это число и полученные результаты сложить, иначе говоря, .

Так же можно проделать и обратную операцию, , вот именно эта обратная операция нас и интересует. Как видно из образца, общий множитель а, можно вынести за скобку.

Подобную операцию можно проделывать как с переменными, такими как и , например, так и с числами: .

Да, это слишком элементарный пример, так же, как и приведенный ранее пример, с разложением числа , ведь все знают, что числа , и делятся на , а как быть, если вам досталось выражение посложнее:

Как узнать на что, например, делится число , неет, с калькулятором-то любой сможет, а без него слабо? А для этого существуют признаки делимости, эти признаки действительно стоит знать, они помогут быстро понять, можно ли вынести за скобку общий множитель.

Признаки делимости

Запомнить их не так сложно, скорее всего, большинство из них и так тебе были знакомы, а что-то будет новым полезным открытием, подробнее в таблице:

Делится на Признак делимости числа на данный делитель
2 Оканчивается одной из цифр: 0, 2, 4, 6, 8
3 Сумма цифр делится на 3
5 Последняя цифра 5 или 0
7 Разность между числом десятков и удвоенной цифрой единиц делится на семь
9 Сумма цифр делится на 9
10 Последняя цифра – ноль
11 Разность между суммой цифр, стоящих на нечетных местах, и суммой цифр, стоящих на четных местах, делится на 11

Примечание: В таблице не хватает признака делимости на 4. Если две последние цифры делятся на 4, то и всё число делится на 4.

Ну как тебе табличка? Советую ее запомнить!

Что ж, вернемся к выражению , может вынести за скобку да и хватит с него? Нет, у математиков принято упрощать, так по полной, выносить ВСЕ что выносится!

И так, с игреком все понятно, а что с числовой частью выражения? Оба числа нечетные, так что на разделить не удастся,

Можно воспользоваться признаком делимости на , сумма цифр , и , из которых состоит число , равна , а делится на , значит и делится на .

Зная это, можно смело делить в столбик, в результате деления на получаем (признаки делимости пригодились!). Таким образом, число мы можем вынести за скобку, так же, как y и в результате имеем:

Чтоб удостовериться, что разложили все верно, можно проверить разложение, умножением!

Также общий множитель можно выносить и в степенных выражениях. Вот тут, например, , видишь общий множитель?

У всех членов этого выражения есть иксы – выносим, все делятся на – снова выносим, смотрим что получилось: .

2. Формулы сокращенного умножения

Формулы сокращенного умножения уже упоминались в теории, если ты с трудом помнишь что это, то тебе стоит освежить их в памяти «Формулы сокращенного умножения».

Ну, а если ты считаешь себя очень умным и тебе лень читать такую тучу информации, то просто читай дальше, глянь на формулы и сразу берись за примеры.

Читайте также:  Acpi ven atk dev 0001

Суть этого разложения в том, что бы заметить в имеющемся перед тобой выражении какую-то определенную формулу, применить ее и получить, таким образом, произведение чего-то и чего-то, вот и все разложение. Дальше приведены формулы:

А теперь попробуй, разложи на множители следующие выражения, используя приведенные выше формулы:

А вот что должно было получиться:

Как ты успел заметить, эти формулы – весьма действенный способ разложения на множители, он подходит не всегда, но может очень пригодиться!

3. Группировка или метод группировки

А вот тебе еще примерчик:

ну и что с ним делать будешь? Вроде бы и на что-то делится и на , а что-то на и на

Но все вместе на что-то одно не разделишь, ну нет тут общего множителя, как не ищи, что, так и оставить, не раскладывая на множители?

Тут надо смекалку проявить, а имя этой смекалке – группировка!

Применяется она как раз, когда общие делители есть не у всех членов. Для группировки необходимо найти группки слагаемых, имеющих общие делители и переставить их так, чтобы из каждой группы можно было получить один и тот же множитель.

Переставлять местами конечно не обязательно, но это дает наглядность, для наглядности же можно взять отдельные части выражения в скобки, их ставить не запрещается сколько угодно, главное со знаками не напутать.

Не очень понятно все это? Объясню на примере:

В многочлене ­­ ставим член – после члена – получаем

группируем первые два члена вместе в отдельной скобке и так же группируем третий и четвертый члены, вынеся за скобку знак «минус», получаем:

А теперь смотрим по отдельности на каждую из двух "кучек", на которые мы разбили выражение скобками.

Хитрость в том, чтоб разбить на такие кучки, из которых можно будет вынести максимально большой множитель, либо, как в этом примере, постараться сгруппировать члены так, чтобы после вынесения из кучек множителей за скобку у нас внутри скобок оставались одинаковые выражения.

Из обеих скобок выносим за скобки общие множители членов, из первой скобки , а из второй , получаем:

Но это же не разложение!

П осле разложения должно остаться только умножение , а пока у нас многочлен просто поделен на две части.

НО! Этот многочлен имеет общий множитель. Это

за скобку и получаем финальное произведение

Бинго! Как видишь, тут уже произведение и вне скобок нет ни сложения, ни вычитания, разложение завершено, т.к. вынести за скобки нам больше нечего.

Может показаться чудом, что после вынесения множителей за скобки у нас в скобках остались одинаковые выражения , которые опять же мы и вынесли за скобку.

И вовсе это не чудо, дело в том, что примеры в учебниках и в ЕГЭ специально сделаны так, что большинство выражений в заданиях на упрощение или разложение на множители при правильном к ним подходе легко упрощаются и резко схлопываются как зонтик при нажатии на кнопку, вот и ищи в каждом выражении ту самую кнопку.

Что-то я отвлекся, что у нас там с упрощением? Замысловатый многочлен принял более простой вид: .

Согласись, уже не такой громоздкий, как был?

4. Выделение полного квадрата.

Иногда для применения формул сокращенного умножения (повтори тему «Формулы сокращенного умножения») необходимо преобразовать имеющийся многочлен , представив одно из его слагаемых в виде суммы или разности двух членов.

В каком случае приходится это делать, узнаешь из примера:

Многочлен в таком виде не может быть разложен при помощи формул сокращенного умножения, поэтому его необходимо преобразовать. Возможно, поначалу тебе будет не очевидно какой член на какие разбивать, но со временем ты научишься сразу видеть формулы сокращенного умножения, даже если они не присутствуют не целиком, и будете довольно быстро определять, чего здесь не хватает до полной формулы, а пока – учись, студент, точнее школьник.

Для полной формулы квадрата разности здесь нужно вместо . Представим третий член как разность , получим: К выражению в скобках можно применить формулу квадрата разности (не путать с разностью квадратов. ) , имеем: , к данному выражению можно применить формулу разности квадратов (не путать с квадратом разности. ) , представив , как , получим: .

Не всегда разложенное на множители выражение выглядит проще и меньше, чем было до разложения, но в таком виде оно становится более подвижным, в том плане, что можно не париться про смену знаков и прочую математическую ерунду. Ну а вот тебе для самостоятельного решения, следующие выражения нужно разложить на множители.

Разложение многочленов для получения произведения иногда кажется запутанным. Но это не так сложно, если разобраться в процессе пошагово. В статье подробно рассказано, как разложить на множители квадратный трехчлен.

Понятие и определение

Многим непонятно, как разложить на множители квадратный трехчлен, и для чего это делается. Сначала может показаться, что это бесполезное занятие. Но в математике ничего не делается просто так. Преобразование нужно для упрощения выражения и удобства вычисления.

Читайте также:  Юсб мышь определяется но не работает

Многочлен, имеющий вид – ax²+bx+c, называется квадратным трехчленом. Слагаемое «a» должно быть отрицательным или положительным. На практике это выражение называется квадратным уравнением. Поэтому иногда говорят и по-другому: как разложить квадратное уравнение.

Интересно! Квадратным многочлен называют из-за самой его большой степени – квадрата. А трехчленом из-за 3-х составных слагаемых.

Некоторые другие виды многочленов:

  • линейный двучлен (6x+8),
  • кубический четырехчлен (x³+4x²-2x+9).

Разложение квадратного трехчлена на множители

Сначала выражение приравнивается к нулю, затем нужно найти значения корней x1 и x2. Корней может не быть, может быть один или два корня. Наличие корней определяется по дискриминанту. Его формулу надо знать наизусть: D=b²-4ac.

Если результат D получается отрицательный, корней нет. Если положительный – корня два. Если в результате получился ноль – корень один. Корни тоже высчитываются по формуле.

Если при вычислении дискриминанта получается ноль, можно применять любую из формул. На практике формула просто сокращается: -b / 2a.

Формулы для разных значений дискриминанта различаются.

Если D положительный:

Если D равен нулю:

Если выражение отрицательное, считать ничего не нужно.

Это интересно! Как найти и чему будет равна длина окружности

Онлайн калькуляторы

В интернете есть онлайн калькулятор. С его помощью можно выполнить разложение на множители. На некоторых ресурсах предоставляется возможность посмотреть решение пошагово. Такие сервисы помогают лучше понять тему, но нужно постараться хорошо вникнуть.

Если тема понятна, рекомендуется использовать онлайн калькулятор для проверки решения.

Полезное видео: Разложение квадратного трехчлена на множители

Примеры

Предлагаем просмотреть простые примеры, как разложить квадратное уравнение на множители.

Пример 1

Здесь наглядно показано, что в результате получится два x, потому что D положительный. Их и нужно подставить в формулу. Если корни получились отрицательные, знак в формуле меняется на противоположный.

Нам известна формула разложения квадратного трехчлена на множители: a(x-x1)(x-x2). Ставим значения в скобки: (x+3)(x+2/3). Перед слагаемым в степени нет числа. Это значит, что там единица, она опускается.

Это интересно! Как раскрыть модуль действительного числа и что это такое

Пример 2

Этот пример наглядно показывает, как решать уравнение, имеющее один корень.

Подставляем получившееся значение:

Пример 3

Сначала вычислим дискриминант, как в предыдущих случаях.

Дискриминант отрицательный, значит, корней нет.

После получения результата стоит раскрыть скобки и проверить результат. Должен появиться исходный трехчлен.

Альтернативный способ решения

Некоторые люди так и не смогли подружиться с дискриминантом. Можно еще одним способом произвести разложение квадратного трехчлена на множители. Для удобства способ показан на примере.

Мы знаем, что должны получиться 2 скобки: (_)(_). Когда выражение имеет такой вид: x²+bx+c, в начале каждой скобки ставим x: (x_)(x_). Оставшиеся два числа – произведение, дающее «c», т. е. в этом случае -10. Узнать, какие это числа, можно только методом подбора. Подставленные числа должны соответствовать оставшемуся слагаемому.

Это интересно! Уроки математики: умножение на ноль главное правило

К примеру, перемножение следующих чисел дает -10:

Далее выполняем подбор и смотрим, чтобы получилось выражение, которое было сначала:

  1. (x-1)(x+10) = x2+10x-x-10 = x2+9x-10. Нет.
  2. (x-10)(x+1) = x2+x-10x-10 = x2-9x-10. Нет.
  3. (x-5)(x+2) = x2+2x-5x-10 = x2-3x-10. Нет.
  4. (x-2)(x+5) = x2+5x-2x-10 = x2+3x-10. Подходит.

Значит, преобразование выражения x2+3x-10 выглядит так: (x-2)(x+5).

Важно! Стоит внимательно следить за тем, чтобы не перепутать знаки.

Разложение сложного трехчлена

Если «a» больше единицы, начинаются сложности. Но все не так трудно, как кажется.

Чтобы выполнить разложение на множители, нужно сначала посмотреть, возможно ли что-нибудь вынести за скобку.

Например, дано выражение: 3x²+9x-30. Здесь выносится за скобку число 3:

3(x²+3x-10). В результате получается уже известный трехчлен. Ответ выглядит так: 3(x-2)(x+5)

Как раскладывать, если слагаемое, которое находится в квадрате отрицательное? В данном случае за скобку выносится число -1. К примеру: -x²-10x-8. После выражение будет выглядеть так:

Схема мало отличается от предыдущей. Есть лишь несколько новых моментов. Допустим, дано выражение: 2x²+7x+3. Ответ также записывается в 2-х скобках, которые нужно заполнить (_)(_). Во 2-ю скобку записывается x, а в 1-ю то, что осталось. Это выглядит так: (2x_)(x_). В остальном повторяется предыдущая схема.

Число 3 дают числа:

Решаем уравнения, подставляя данные числа. Подходит последний вариант. Значит, преобразование выражения 2x²+7x+3 выглядит так: (2x+1)(x+3).

Это интересно! Считаем правильно: как находить процент от суммы и числа

Другие случаи

Преобразовать выражение получится не всегда. При втором способе решение уравнения не потребуется. Но возможность преобразования слагаемых в произведение проверяется только через дискриминант.

Стоит потренироваться решать квадратные уравнения, чтобы при использовании формул не возникало трудностей.

Полезное видео: разложение трехчлена на множители

Вывод

Пользоваться можно любым способом. Но лучше оба отработать до автоматизма. Также научиться хорошо решать квадратные уравнения и раскладывать многочлены на множители нужно тем, кто собирается связать свою жизнь с математикой. На этом строятся все следующие математические темы.

Ссылка на основную публикацию
Adblock detector