Формула симпсона для вычисления интеграла

Формула симпсона для вычисления интеграла

При вычислении определенного интеграла не всегда получаем точное решение. Не всегда удается представление в виде элементарной функции. Формула Ньютона-Лейбница не подходит для вычисления, поэтому необходимо использовать методы численного интегрирования. Такой метод позволяет получать данные с высокой точностью. Метод Симпсона является таковым.

Для этого необходимо дать графическое представление выведению формулы. Далее идет запись оценки абсолютной погрешности при помощи метода Симпсона. В заключении произведем сравнение трех методов: Симпсона, прямоугольников, трапеций.

Метод парабол – суть, формула, оценка, погрешности, иллюстрации

Задана функция вида y = f ( x ) , имеющая непрерывность на интервале [ a ; b ] , необходимо произвести вычисление определенного интеграла ∫ a b f ( x ) d x

Необходимо разбить отрезок [ a ; b ] на n отрезков вида x 2 i — 2 ; x 2 i , i = 1 , 2 , . . . , n с длиной 2 h = b — a n и точками a = x 0 x 2 x 4 . . . x 2 π — 2 x 2 π = b . Тогда точки x 2 i — 1 , i = 1 , 2 , . . . , n считаются серединами отрезков x 2 i — 2 ; x 2 i , i = 1 , 2 , . . . , n . Данный случай показывает, что определение узлов производится через x i = a + i · h , i = 0 , 1 , . . . , 2 n .

Суть метода парабол

Каждый интервал x 2 i — 2 ; x 2 i , i = 1 , 2 , . . . , n подынтегральной функции приближен при помощи параболы, заданной y = a i x 2 + b i x + c i , проходящей через точки с координатами x 2 i — 2 ; f ( x 2 i — 2 ) , x 2 i — 1 ; x 2 i — 1 , x 2 i ; f ( x 2 i ) . Поэтому метод и имеет такое название.

Данные действия выполняются для того, чтобы интеграл ∫ x 2 i — 2 x 2 i a i x 2 + b i x + c i d x взять в качестве приближенного значения ∫ x 2 i — 2 x 2 i f ( x ) d x . Можем вычислить при помощи формулы Ньютона-Лейбница. Это и есть суть метода парабол. Рассмотрим рисунок, приведенный ниже.

Графическая иллюстрация метода парабол (Симпсона)

При помощи красной линии изображается график функции y = f ( x ) , синей – приближение графика y = f ( x ) при помощи квадратичных парабол.

Вывод формулы метода Симпсона (парабол)

Исходя из пятого свойства определенного интеграла получаем ∫ a b f ( x ) d x = ∑ i = 1 n ∫ x 2 i — 2 x 2 i f ( x ) d x ≈ ∑ i = 1 n ∫ x 2 i — 2 x 2 i ( a i x 2 + b i x + c i ) d x

Для того чтобы получить формулу методом парабол, необходимо произвести вычисление:

∫ x 2 i — 2 x 2 i ( a i x 2 + b i x + c i ) d x

Пусть x 2 i — 2 = 0 . Рассмотрим рисунок, приведенный ниже.

Изобразим, что через точки с координатами x 2 i — 2 ; f ( x 2 i — 2 ) , x 2 i — 1 ; x 2 i — 1 , x 2 i ; f ( x 2 i ) может проходить одна квадратичная парабола вида y = a i x 2 + b i x + c i . Иначе говоря, необходимо доказать, что коэффициенты могут определяться только единственным способом.

Имеем, что x 2 i — 2 ; f ( x 2 i — 2 ) , x 2 i — 1 ; x 2 i — 1 , x 2 i ; f ( x 2 i ) являются точками параболы, тогда каждое из представленных уравнений является справедливым. Получаем, что

a i ( x 2 i — 2 ) 2 + b i · x 2 i — 2 + c i = f ( x 2 i — 2 ) a i ( x 2 i — 1 ) 2 + b i · x 2 i — 1 + c i = f ( x 2 i — 1 ) a i ( x 2 i ) 2 + b i · x 2 i + c i = f ( x 2 i )

Полученная система разрешается относительно a i , b i , c i , где необходимо искать определитель матрицы по Вандермонду. Получаем, что

( x 2 i — 2 ) 2 x 2 i — 2 1 x 2 i — 1 ) 2 x 2 i — 1 1 ( x 2 i ) 2 x 2 i 1 , причем он считается отличным от нуля и не совпадает с точками x 2 i — 2 , x 2 i — 1 , x 2 i . Это признак того, что уравнение имеет только одно решение, тогда и выбранные коэффициенты a i ; b i ; c i могут определяться только единственным образом, тогда через точки x 2 i — 2 ; f ( x 2 i — 2 ) , x 2 i — 1 ; x 2 i — 1 , x 2 i ; f ( x 2 i ) может проходить только одна парабола.

Можно переходить к нахождению интеграла ∫ x 2 i — 2 x 2 i ( a i x 2 + b i x + c i ) d x .

f ( x 2 i — 2 ) = f ( 0 ) = a i · 0 2 + b i · 0 + c i = c i f ( x 2 i — 1 ) = f ( h ) = a i · h 2 + b i · h + c i f ( x 2 i ) = f ( 0 ) = 4 a i · h 2 + 2 b i · h + c i

Для осуществления последнего перехода необходимо использовать неравенство вида

∫ x 2 i — 2 x 2 i ( a i x 2 + b i x + c i ) d x = ∫ 0 2 h ( a i x 2 + b i x + c i ) d x = = a i x 3 3 + b i x 2 2 + c i x 0 2 h = 8 a i h 3 3 + 2 b i h 2 + 2 c i h = = h 3 8 a i h 2 + 6 b i h + 6 c i = h 3 f x 2 i — 2 + 4 f 2 2 i — 1 + f x 2 i

Значит, получаем формулу, используя метод парабол:

∫ a b f ( x ) d x ≈ ∑ i = 1 n ∫ x 2 i — 2 x 2 i a i x 2 + b i x + c i d x = = ∑ i = 1 n h 3 ( f ( x 2 i — 2 ) + 4 f ( x 2 i — 1 ) + f ( x 2 i ) ) = = h 3 f ( x 0 ) + 4 f ( x 1 ) + f ( x 2 ) + f ( x 2 ) + 4 f ( x 3 ) + f ( x 4 ) + . . . + + f ( x 2 n — 2 ) + 4 f ( x 2 n — 1 ) + f ( x 2 n ) = = h 3 f ( x 0 ) + 4 ∑ i = 1 n f ( x 2 i — 1 ) + 2 ∑ i = 1 n — 1 f ( x 2 i ) + f ( x 2 n )

Формула метода Симпсона имеет вид ∫ a b f ( x ) d x ≈ h 3 f ( x 0 ) + 4 ∑ i = 1 n f ( x 2 i — 1 ) + 2 ∑ i = 1 n — 1 f ( x 2 i ) + f ( x 2 n ) .

Формула оценки абсолютной погрешности имеет вид δ n ≤ m a x [ a ; b ] f ( 4 ) ( x ) · ( b — a ) 5 2880 n 4 .

Примеры приближенного вычисления определенных интегралов методом парабол

Метод Симпсона предполагает приближенное вычисление определенных интегралов. Чаще всего имеются два типа задач, для которых применим данный метод:

  • при приближенном вычислении определенного интеграла;
  • при нахождении приближенного значения с точностью δ n .

На точность вычисления влияет значение n , чем выше n , тем точнее промежуточные значения.

Вычислить определенный интеграл ∫ 0 5 x d x x 4 + 4 при помощи метода Симпсона, разбивая отрезок интегрирования на 5 частей.

По условию известно, что a = 0 ; b = 5 ; n = 5 , f ( x ) = x x 4 + 4 .

Тогда запишем формулу Симпсона в виде

∫ a b f ( x ) d x ≈ h 3 f ( x 0 ) + 4 ∑ i = 1 n f ( x 2 i — 1 ) + 2 ∑ i = 1 n — 1 f ( x 2 i ) + f ( x 2 n )

Чтобы применить ее в полной мере, необходимо рассчитать шаг по формуле h = b — a 2 n , определить точки x i = a + i · h , i = 0 , 1 , . . . , 2 n и найти значения подынтегральной функции f ( x i ) , i = 0 , 1 , . . . , 2 n .

Промежуточные вычисления необходимо округлять до 5 знаков. Подставим значения и получим

h = b — a 2 n = 5 — 0 2 · 5 = 0 . 5

Найдем значение функции в точках

i = 0 : x i = x 0 = a + i · h = 0 + 0 · 0 . 5 = 0 ⇒ f ( x 0 ) = f ( 0 ) = 0 0 4 + 4 = 0 i = 1 : x i = x 1 = a + i · h = 0 + 1 · 0 . 5 = 0 . 5 ⇒ f ( x 1 ) = f ( 0 . 5 ) = 0 . 5 0 . 5 4 + 4 ≈ 0 . 12308 . . . i = 10 : x i = x 10 = a + i · h = 0 + 10 · 0 . 5 = 5 ⇒ f ( x 10 ) = f ( 5 ) = 5 5 4 + 4 ≈ 0 . 00795

Наглядность и удобство оформляется в таблице, приведенной ниже

i 1 2 3 4 5
x i 0 . 5 1 1 . 5 2 2 . 5
f x i 0 . 12308 0 . 2 0 . 16552 0 . 1 0 . 05806
i 6 7 8 9 10
x i 3 3 . 5 4 4 . 5 5
f x i 0 . 03529 0 . 02272 0 . 01538 0 . 01087 0 . 00795

Необходимо подставить результаты в формулу метода парабол:

∫ 0 5 x d x x 4 + 4 ≈ h 3 f ( x 0 ) + 4 ∑ i = 1 n f ( x 2 i — 1 ) + 2 ∑ i = 1 n — 1 f ( x 2 i ) + f ( x 2 n ) = = 0 . 5 3 0 + 4 · 0 . 12308 + 0 . 16552 + 0 . 05806 + + 0 . 02272 + 0 . 01087 + 2 · 0 . 2 + 0 . 1 + + 0 . 03529 + 0 . 01538 + 0 . 00795 ≈ ≈ 0 . 37171

Читайте также:  Восстановление файловой системы fat32

Для вычисления мы выбрали определенный интеграл, который можно вычислить по Ньютону-Лейбницу. Получим:

∫ 0 5 x d x x 4 + 4 = 1 2 ∫ 0 5 d ( x 2 ) x 2 2 + 4 = 1 4 a r c t g x 2 2 0 5 = 1 4 a r c t g 25 2 ≈ 0 . 37274

Ответ: Результаты совпадают до сотых.

Вычислить неопределенный интеграл ∫ 0 π sin 3 x 2 + 1 2 d x при помощи метода Симпсона с точностью до 0 , 001 .

По условию имеем, что а = 0 , b = π , f ( x ) = sin 3 x 2 + 1 2 , δ n ≤ 0 . 001 . Необходимо определить значение n . Для этого используется формула оценки абсолютной погрешности метода Симпсона вида δ n ≤ m a x [ a ; b ] f ( 4 ) ( x ) · ( b — a ) 5 2880 n 4 ≤ 0 . 001

Когда найдем значение n , то неравенство m a x [ a ; b ] f ( 4 ) ( x ) · ( b — a ) 5 2880 n 4 ≤ 0 . 001 будет выполняться. Тогда, применив метод парабол, погрешность при вычислении не превысит 0 . 001 . Последнее неравенство примет вид

n 4 ≥ m a x [ a ; b ] f ( 4 ) ( x ) · ( b — a ) 5 2 . 88

Теперь необходимо выяснить, какое наибольшее значение может принимать модуль четвертой производной.

f ‘ ( x ) = sin 3 x 2 + 1 2 ‘ = 3 2 cos 3 x 2 ⇒ f » ( x ) = 3 2 cos 3 x 2 ‘ = — 9 4 sin 3 x 2 ⇒ f ‘ ‘ ‘ ( x ) = — 9 4 sin 3 x 2 ‘ = — 27 8 cos 3 x 2 ⇒ f ( 4 ) ( x ) = — 27 8 cos 3 x 2 ‘ = 81 16 sin 3 x 2

Область определения f ( 4 ) ( x ) = 81 16 sin 3 x 2 принадлежит интервалу — 81 16 ; 81 16 , а сам отрезок интегрирования [ 0 ; π ) имеет точку экстремума, из этого следует, что m a x [ 0 ; π ] f ( 4 ) ( x ) = 81 16 .

n 4 ≥ m a x [ a ; b ] f ( 4 ) ( x ) · ( b — a ) 5 2 . 88 ⇔ n 4 ≥ 81 16 · π — 0 5 2 . 88 ⇔ ⇔ n 4 > 537 . 9252 ⇔ n > 4 . 8159

Получили, что n – натуральное число, тогда его значение может быть равным n = 5 , 6 , 7 … для начала необходимо взять значение n = 5 .

Действия производить аналогично предыдущему примеру. Необходимо вычислить шаг. Для этого

h = b — a 2 n = π — 0 2 · 5 = π 10

Найдем узлы x i = a + i · h , i = 0 , 1 , . . . , 2 n , тогда значение подынтегральной функции будет иметь вид

i = 0 : x i = x 0 = a + i · h = 0 + 0 · π 10 = 0 ⇒ f ( x 0 ) = f ( 0 ) = sin 3 · 0 2 + 1 2 = 0 . 5 i = 1 : x i = x 1 = a + i · h = 0 + 1 · π 10 = π 10 ⇒ f ( x 1 ) = f ( π 10 ) = sin 3 · π 10 2 + 1 2 ≈ 0 . 953990 . . . i = 10 : x i = x 10 = a + i · h = 0 + 10 · π 10 = π ⇒ f ( x 10 ) = f ( π ) = sin 3 · π 2 + 1 2 ≈ — 0 . 5

Для объединения результатов запишем данные в таблицу.

i 1 2 3 4
x i π 10 π 5 3 π 10 2 π 5
f ( x i ) 0 . 5 0 . 953990 1 . 309017 1 . 487688 1 . 451056
i 5 6 7 8 9 10
x i π 2 3 π 5 7 π 10 4 π 5 9 π 10 π
f ( x i ) 1 . 207107 0 . 809017 0 . 343566 — 0 . 087785 — 0 . 391007 — 0 . 5

Осталось подставить значения в формулу решения методом парабол и получим

∫ 0 π sin 3 x 2 + 1 2 ≈ h 3 f ( x 0 ) + 4 ∑ i = 1 n f ( x 2 i — 1 ) + 2 ∑ i = 1 n — 1 f ( x 2 i ) + f ( x 2 n ) = = π 30 · 0 , 5 + 4 · 0 . 953990 + 1 . 487688 + 1 . 207107 + + 0 . 343566 — 0 . 391007 + 2 · 1 . 309017 + 1 . 451056 + + 0 . 809017 — 0 . 87785 — 0 . 5 = = 2 . 237650

Метод Симпсона позволяет нам получать приближенное значение определенного интеграла ∫ 0 π sin 3 x 2 + 1 2 d x ≈ 2 . 237 с точностью до 0 , 001 .

При вычислении формулой Ньютона-Лейбница получим в результате

∫ 0 π sin 3 x 2 + 1 2 d x = — 2 3 cos 3 x 2 + 1 2 x 0 π = = — 3 2 cos 3 π 2 + π 2 — — 2 3 cos 0 + 1 2 · 0 = π 2 + 2 3 ≈ 2 . 237463

Ответ: ∫ 0 π sin 3 x 2 + 1 2 d x ≈ 2 . 237

Замечание

В большинстве случаях нахождение m a x [ a ; b ] f ( 4 ) ( x ) проблематично. Поэтому применяется альтернатива – метод парабол. Его принцип подробно разъясняется в разделе метода трапеций. Метод парабол считается предпочтительным способом для разрешения интеграла. Вычислительная погрешность влияет на результат n . Чем меньше его значение, тем точнее приближенное искомое число.

Вычисление интегралов по формулам прямоугольников, трапеций и формуле Симпсона. Оценка погрешностей.

Методические указания по теме 4.1:

Вычисление интегралов по формулам прямоугольников. Оценка погрешности:

Решение многих технических задач сводится к вычислению определенных интегралов, точное выражение которых сложно, требует длительных вычислений и не всегда оправдано практически. Здесь бывает вполне достаточно их приближенного значения. Например, необходимо вычислить площадь, ограниченную линией, уравнение которой неизвестно, осью х и двумя ординатами. В этом случае можно заменить данную линию более простой, для которой известно уравнение. Площадь полученной таким образом криволинейной трапеции принимается за приближенное значение искомого интеграла. Геометрически идея способа вычислений определенного интеграла по формуле прямоугольников состоит в том, что площадь криволинейной трапеции А1АВВ1 заменяется площадью равновеликого прямоугольника А1А2В1В2 , которая по теореме о среднем равна

где f(c) — высота прямоугольника А1А2В1В2 , представляющая собой значение подынтегральной функции в некоторой промежуточной точке c(a

Обозначим f(a)=A1A,f(b)=B1B. высота трапеции A1B1=b-a, площадь . Следовательно, или

Читайте также:  Во сколько раз увеличится скорость

Это так называемая малая формула трапеций.

Для получения более точного результата необходимо разбить площадь криволинейной трапеции на n площадей ординатами, отстоящими друг от друга на расстоянии . Суммируем площади получившихся трапеций:

где по малой формуле трапеций


,

,

так как и , то можно записать так называемую большую формулу трапеций: , где y,y1,y2,. ynзначения подынтегральной функции при значениях аргумента, соответственно,

Пример 2. Ширина реки 26 м, промеры глубины в поперечном сечении реки через каждые 2 м дали, следующие результаты:

х
у 0,3 0,9 1,7 2,1 2,8 3,4 3,3 3,0 3,5 2,9 1,7 1,2 0,8 0,6

х—расстояние от одного берега, а у— соответствующая глубина в метрах.

Зная, что средняя скорость течения 1,3 м/с, определить секундный расход Q воды в реке.

По формуле трапеций площадь поперечного сечения

Секундный расчет воды Q получим, если умножим эту площадь поперечного сечения на скорость течения реки:

Здесь точно оценить погрешность нельзя. Некоторые косвенные методы оценок позволяют указать приближенно, что погрешность вычисления площади S составляет примерно 3м 2 , значит, погрешность вычисления Q составляет примерно 4 м 3 /с.

Пример 3. По формуле трапеций вычислить при n=5.

Положим

,

Вычисление интегралов по формуле Симпсона:

Это более совершенный способ – график подынтегральной функции приближается не ломаной линией, а маленькими параболами. Сколько промежуточных отрезков – столько и маленьких парабол. Если взять те же три отрезка, то метод Симпсона даст ещё более точное приближение, чем метод прямоугольников или метод трапеций. Задача на вычисление определенного интеграла по формуле Симпсона – самая популярное задание на практике. И методу парабол будет уделено значительное внимание.

Рассмотрим определенный интеграл , где – функция, непрерывная на отрезке . Проведём разбиение отрезка на чётное количество равных отрезков. Чётное количество отрезков обозначают через .

Итак, наше разбиение имеет следующий вид:

Термины аналогичны терминам метода трапеций:
Точки называют узлами.

Формула Симпсона для приближенного вычисления определенного интеграла имеет следующий вид:
где:
– длина каждого из маленьких отрезков или шаг;
– значения подынтегральной функции в точках .

Детализируя это нагромождение, разберу формулу подробнее:
– сумма первого и последнего значения подынтегральной функции;
– сумма членов с чётнымииндексами умножается на 2;
– сумма членов с нечётными индексами умножается на 4.

Пример 4.Вычислить приближенно определенный интеграл по формуле Симпсона с точностью до 0,001. Разбиение начать с двух отрезков

Необходимо вычислить определенный интеграл с определенной точностью.. Как и для метода трапеций, существует формула, которая сразу позволит определить нужное количество отрезков, чтобы гарантированно достичь требуемой точности. Если у нас два отрезка разбиения , то узлов будет на один больше: . И формула Симпсона принимает весьма компактный вид:

Вычислим шаг разбиения:

Заполним расчетную таблицу:


Еще раз комментирую, как заполняется таблица:

В верхнюю строку записываем «счётчик» индексов

Во второй строке сначала пишем нижний предел интегрирования , а затем последовательно приплюсовываем шаг .

В третью строку заносим значения подынтегральной функции. Например, если , то . В результате:

Первичный результат получен. Теперь удваиваем количество отрезков до четырёх: . Формула Симпсона для данного разбиения принимает следующий вид:

Вычислим шаг разбиения:

Заполним расчетную таблицу:

Таким образом:

Оцениваем погрешность:

Погрешность больше требуемой точности: , поэтому необходимо еще раз удвоить количество отрезков: .

Формула Симпсона примет вид:

Вычислим шаг:

И снова заполним расчетную таблицу:

Таким образом:

Оцениваем погрешность:

Погрешность меньше требуемой точности: . Осталось взять наиболее точное приближение , округлить его до трёх знаков после запятой и записать:

Ответ: с точностью до 0,001

Вопросы для самопроверки по теме 4.1:

1.Какой вид имеет формула прямоугольников?

2.Какой вид имеет формула трапеций?

3.Какой вид имеет формула Симпсона?

Задания для самостоятельного решения по теме 4.1:

1. Вычислите по формуле прямоугольников:

a) б) .

2. Вычислите по формуле трапеций , разбивая отрезок на 4 равные части; найдите его точное значение по формуле Ньютона-Лейбница и относительную погрешность в процентах.

3. Вычислите по формуле трапеций с точностью до 0,001.

Читайте также:  Как перепрограммировать кнопки на клавиатуре

4. По формуле трапеций вычислите, приняв n=8.

5.Вычислить приближенно определенный интеграл по формуле Симпсона с точностью до 0,0001. Разбиение начать с двух отрезков
.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент — человек, постоянно откладывающий неизбежность. 10825 — | 7386 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Для нахождения определенного интеграла методом трапеций площадь криволинейной трапеции также разбивается на n прямоугольных трапеций с высотами h и основаниями у1, у2, у3. уn, где n — номер прямоугольной трапеции. Интеграл будет численно равен сумме площадей прямоугольных трапеций (рисунок 4).

Рис. 4 Площадь под кривой y=f(x) аппроксимируется суммой площадей прямоугольных трапеций.

n — количество разбиений

Погрешность формулы трапеций оценивается числом

Погрешность формулы трапеций с ростом уменьшается быстрее, чем погрешность формулы прямоугольников. Следовательно, формула трапеций позволяет получить большую точность, чем метод прямоугольников.

Если для каждой пары отрезков построить многочлен второй степени, затем проинтегрировать его на отрезке и воспользоваться свойством аддитивности интеграла, то получим формулу Симпсона.

В методе Симпсона для вычисления определенного интеграла весь интервал интегрирования [a,b] разбивается на подинтервалы равной длины h=(b-a)/n. Число отрезков разбиения является четным числом. Затем на каждой паре соседних подинтервалов подинтегральная функция f(x) заменяется многочленом Лагранжа второй степени (рисунок 5).

Рис. 5 Функция y=f(x) на отрезке заменяется многочленом 2-го порядка

Рассмотрим подынтегральную функцию на отрезке . Заменим эту подынтегральную функцию интерполяционным многочленом Лагранжа второй степени, совпадающим с y= в точках :

Проинтегрируем на отрезке .:

Введем замену переменных:

Учитывая формулы замены,

Выполнив интегрирование, получим формулу Симпсона:

Полученное для интеграла значение совпадает с площадью криволинейной трапеции, ограниченной осью , прямыми , и параболой, проходящей через точки На отрезке формула Симпсона будет иметь вид:

В формуле параболы значение функции f(x) в нечетных точках разбиения х1, х3, . х2n-1 имеет коэффициент 4, в четных точках х2, х4, . х2n-2 — коэффициент 2 и в двух граничных точках х=а, хn =b — коэффициент 1.

Геометрический смысл формулы Симпсона: площадь криволинейной трапеции под графиком функции f(x) на отрезке [a, b] приближенно заменяется суммой площадей фигур, лежащих под параболами.

Если функция f(x) имеет на [a, b] непрерывную производную четвертого порядка, то абсолютная величина погрешности формулы Симпсона не больше чем

где М — наибольшее значение на отрезке [a, b]. Так как n 4 растет быстрее, чем n 2 , то погрешность формулы Симпсона с ростом n уменьшается значительно быстрее, чем погрешность формулы трапеций.

Этот интеграл легко вычисляется:

Возьмем n равным 10, h=0.1, рассчитаем значения подынтегральной функции в точках разбиения , а также полуцелых точках .

По формуле средних прямоугольников получим Iпрям=0.785606 (погрешность равна 0.027%), по формуле трапеций Iтрап=0.784981 (погрешность около 0,054. При использовании метода правых и левых прямоугольников погрешность составляет более 3%.

Для сравнения точности приближенных формул вычислим еще раз интеграл

но теперь по формуле Симпсона при n=4. Разобьем отрезок [0, 1] на четыре равные части точками х=0, х1=1/4, х2=1/2, х3=3/4, х4=1 и вычислим приближенно значения функции f(x)=1/(1+x) в этих точках: у=1,0000, у1=0,8000, у2=0,6667, у3=0,5714, у4=0,5000.

По формуле Симпсона получаем

Оценим погрешность полученного результата. Для подынтегральной функции f(x)=1/(1+x) имеем: f (4) (x)=24/(1+x) 5 , откуда следует, что на отрезке [0, 1] . Следовательно, можно взять М=24, и погрешность результата не превосходит величины 24/(2880 4 4 )=0.0004. Сравнивая приближенное значение с точным, заключаем, что абсолютная ошибка результата, полученного по формуле Симпсона, меньше 0,00011. Это находится в соответствии с данной выше оценкой погрешности и, кроме того, свидетельствует, что формула Симпсона значительно точнее формулы трапеций. Поэтому формулу Симпсона для приближенного вычисления определенных интегралов используют чаще, чем формулу трапеций.

Ссылка на основную публикацию
Adblock detector