Математика исследование функции и построение графика

Математика исследование функции и построение графика

Правила ввода функции

  1. Примеры
    ≡ x^2/(x+2)
    cos 2 (2x+π) ≡ (cos(2*x+pi))^2
    ≡ x+(x-1)^(2/3)

Пример №1 . Провести полное исследование функции и построить ее график.

1) Функция определена всюду, кроме точек .

2) Функция нечетная, так как f(-x) = -f(x) , и, следовательно, ее график симметричен относительно начала координат. Поэтому ограничимся исследованием только для 0 ≤ x ≤ +∞.

3) Функция не периодическая.

4) Так как y=0 только при x=0, то пересечение с осями координат происходит только в начале координат.

5) Функция имеет разрыв второго рода в точке , причем , . Попутно отметим, что прямая – вертикальная асимптота.

6) Находим и приравниваем ее к нулю: , откуда x1 = -3, x2 = 0, x3 = 3. На экстремум надо исследовать только точку x=3 (точку x2=0 не исследуем, так как она является граничной точкой промежутка [0, +∞)).

В окрестности точки x3=3 имеет: y’>0 при x 3, следовательно, в точке x3 функция имеет максимум, ymax(3)=-9/2. Найти первую производную функции

7) Находим . Видим, что y’’=0 только при x=0, при этом y” 0 при x>0, следовательно, в точке (0,0) кривая имеет перегиб. Иногда направление вогнутости может измениться при переходе через разрыв кривой, поэтому следует выяснить знак y” и около точек разрыва функции. В нашем случае y”>0 на промежутке (0, ) и y” Найти вторую производную функции

8) Выясним вопрос об асимптотах.

Наличие вертикальной асимптоты установлено выше. Ищем горизонтальные: , следовательно, горизонтальных асимптот нет.

Найдем наклонные асимптоты: , , следовательно, y=-x – наклонная двусторонняя асимптота.

9) Теперь, используя полученные данные, строим чертеж:
Построить график функции

Пример №2 . Построить график функции .
Решение.
1. Область определения функции D(y) = (-∞;0)U(0;∞).
2. Функция не является четной или нечетной.
3. Найдем точки пересечения графика с осью ОХ; имеем
; .
4. Точки разрыва x=0 , причем ; следовательно, x=0 является вертикальной асимптотой графика.
Найдем наклонные асимптоты:
;
.
Наклонная асимптота имеет уравнение y=x .
5. Найдем экстремум функции и интервалы возрастания и убывания. Имеем . Существует единственная критическая точка x =2. В промежутках x∈(-∞ ;0)∪(2; +∞) y’>0, следовательно, функция возрастает; в промежутке x∈(0;2) y’ 0, следовательно, x=2 – точка минимума ymin=3.
6. Найдем интервалы выпуклости и вогнутости кривой и точки ее перегиба. Так как y’’>0 (x≠0), то график функции всюду вогнут. Точек перегиба кривая не имеет.
Строим график функции.

На этой странице мы постарались собрать для вас наиболее полную информацию об исследовании функции. Больше не надо гуглить! Просто читайте, изучайте, скачивайте, переходите по отобранным ссылкам.

Что будет дальше?

Общая схема исследования

Для чего нужно это исследование, спросите вы, если есть множество сервисов, которые построят график онлайн для самых замудренных функций? Для того, чтобы узнать свойства и особенности данной функции: как ведет себя на бесконечности, насколько быстро меняет знак, как плавно или резко возрастает или убывает, куда направлены "горбы" выпуклости, где не определены значения и т.п.

А уже на основании этих "особенностей" и строится макет графика — картинка, которая на самом-то деле вторична (хотя в учебных целях важна и подтверждает правильность вашего решения).

Начнем, конечно же, с плана. Исследование функции — объемная задача (пожалуй, самая объемная из традиционного курса высшей математики, обычно от 2 до 4 страниц с учетом чертежа), поэтому, чтобы не забыть, что в каком порядке делать, следуем пунктам, описанным ниже.

Алгоритм

  1. Найти область определения. Выделить особые точки (точки разрыва).
  2. Проверить наличие вертикальных асимптот в точках разрыва и на границах области определения.
  3. Найти точки пересечения с осями координат.
  4. Установить, является ли функция чётной или нечётной.
  5. Определить, является ли функция периодической или нет (только для тригонометрических функций).
  6. Найти точки экстремума и интервалы монотонности.
  7. Найти точки перегиба и интервалы выпуклости-вогнутости.
  8. Найти наклонные асимптоты. Исследовать поведение на бесконечности.
  9. Выбрать дополнительные точки и вычислить их координаты.
  10. Построить график и асимптоты.

В разных источниках (учебниках, методичках, лекциях вашего преподавателя) список может иметь отличный от данного вид: некоторые пункты меняются местами, объединяются с другими, сокращаются или убираются. Учитывайте требования/предпочтения вашего учителя при оформлении решения.

Схема исследования в формате pdf: скачать.

Полный пример решения онлайн

Провести полное исследование и построить график функции $$ y(x)=frac<1-x>. $$

1) Область определения функции. Так как функция представляет собой дробь, нужно найти нули знаменателя. $$1-x=0, quad Rightarrow quad x=1.$$ Исключаем единственную точку $x=1$ из области определения функции и получаем: $$ D(y)=(-infty; 1) cup (1;+infty). $$

2) Исследуем поведение функции в окрестности точки разрыва. Найдем односторонние пределы:

Так как пределы равны бесконечности, точка $x=1$ является разрывом второго рода, прямая $x=1$ — вертикальная асимптота.

3) Определим точки пересечения графика функции с осями координат.

Найдем точки пересечения с осью ординат $Oy$, для чего приравниваем $x=0$:

Таким образом, точка пересечения с осью $Oy$ имеет координаты $(0;8)$.

Найдем точки пересечения с осью абсцисс $Ox$, для чего положим $y=0$:

Уравнение не имеет корней, поэтому точек пересечения с осью $Ox$ нет.

Читайте также:  Как в фотошопе сохранить слои по отдельности

Заметим, что $x^2+8>0$ для любых $x$. Поэтому при $x in (-infty; 1)$ функция $y>0$ (принимает положительные значения, график находится выше оси абсцисс), при $x in (1; +infty)$ функция $ylt 0$ (принимает отрицательные значения, график находится ниже оси абсцисс).

4) Функция не является ни четной, ни нечетной, так как:

5) Исследуем функцию на периодичность. Функция не является периодической, так как представляет собой дробно-рациональную функцию.

6) Исследуем функцию на экстремумы и монотонность. Для этого найдем первую производную функции:

Приравняем первую производную к нулю и найдем стационарные точки (в которых $y’=0$):

Получили три критические точки: $x=-2, x=1, x=4$. Разобьем всю область определения функции на интервалы данными точками и определим знаки производной в каждом промежутке:

При $x in (-infty; -2), (4;+infty)$ производная $y’ lt 0$, поэтому функция убывает на данных промежутках.

При $x in (-2; 1), (1;4)$ производная $y’ >0$, функция возрастает на данных промежутках.

При этом $x=-2$ — точка локального минимума (функция убывает, а потом возрастает), $x=4$ — точка локального максимума (функция возрастает, а потом убывает).

Найдем значения функции в этих точках:

Таким образом, точка минимума $(-2;4)$, точка максимума $(4;-8)$.

7) Исследуем функцию на перегибы и выпуклость. Найдем вторую производную функции:



Приравняем вторую производную к нулю:

Полученное уравнение не имеет корней, поэтому точек перегиба нет. При этом, когда $x in (-infty; 1)$ выполняется $y» gt 0$, то есть функция вогнутая, когда $x in (1;+infty)$ выполняется $y» lt 0$, то есть функция выпуклая.

8) Исследуем поведение функции на бесконечности, то есть при .

Так как пределы бесконечны, горизонтальных асимптот нет.

Попробуем определить наклонные асимптоты вида $y=kx+b$. Вычисляем значения $k, b$ по известным формулам:


Получили, у что функции есть одна наклонная асимптота $y=-x-1$.

9) Дополнительные точки. Вычислим значение функции в некоторых других точках, чтобы точнее построить график.

10) По полученным данным построим график, дополним его асимптотами $x=1$ (синий), $y=-x-1$ (зеленый) и отметим характерные точки (фиолетовым пересечение с осью ординат, оранжевым экстремумы, черным дополнительные точки):

Примеры решений по исследованию функции

Разные функции (многочлены, логарифмы, дроби) имеют свои особенности при исследовании (разрывы, асимптоты, количество экстремумов, ограниченная область определения), поэтому здесь мы пострались собрать примеры из контрольных на исследование функций наиболее часто встречающихся типов. Удачи в изучении!

Задача 1. Исследовать функцию методами дифференциального исчисления и построить график.

Задача 2. Исследовать функцию и построить ее график.

Задача 3. Исследовать функцию с помощью производной и построить график.

Задача 4. Провести полное исследование функции и построить график.

Задача 5. Исследовать функцию методом дифференциального исчисления и построить график.

Задача 6. Исследовать функцию на экстремумы, монотонность, выпуклость и построить график.

Задача 7. Проведите исследование функции с построением графика.

Задача 8. Построить график функции $y=y(x)$, заданной параметрически

Задача 9. Исследовать функцию и построить ее график $r=1+tg phi$.

Задача 10. Исследовать функцию и построить ее график $(x^2+y^2)^3=4x^2y^2$.

Задача 11. Провести полное исследование периодической функции $y = cos 3x – 2 sin 6x$ и построить её график.

Задача 12. Провести полное исследование и построить график функции $y=f(x)$ с помощью Excel. Найти наибольшее и наименьшее значения функции на отрезке $[-3; -1]$.

Задача 13. Провести полное исследование и построить график функции.

Как построить график онлайн?

Даже если преподаватель требует вас сдавать задание, написанное от руки, с чертежом на листке в клеточку, вам будет крайне полезно во время решения построить график в специальной программе (или сервисе), чтобы проверить ход решения, сравнить его вид с тем, что получается вручную, возможно, найти ошибки в своих расчетах (когда графики явно ведут себя непохоже).

Ниже вы найдете несколько ссылок на сайты, которые позволяют построить удобно, быстро, красиво и, конечно, бесплатно графики практически любых функций. На самом деле таких сервисов гораздо больше, но стоит ли искать, если выбраны лучшие?

Графический калькулятор Desmos

Desmos.com
Невероятно гибкий и функциональный графический калькулятор. Интутивно понятно вводятся формулы (прямо на ходу преобразуются), автоматически подбираются масштаб и цвета графика для максимальной наглядности. Например, для функции $y(x)=frac<4(x-2)^2>$ буквально за минуту построены основной график и асимптоты, вот что получилось:


При этом сайт сам пометил важные точки на графике (см. серым): локальный экстремум, пересечение с осями.

Вы можете менять масштаб, цвета, вид линий; добавлять на график точки, линии, кривые, табличные данные и даже анимацию!

Посмотрите, какую красоту Desmos умеет рисовать (точнее, его пользователи):

Сайт для построения графиков y(x).ru

y(x).ru
Это уже наш продукт, возможно, не такой красивый и интерактивный, но вполне подходящий для учебных целей. Можно строить онлайн несколько графиков одновременно, при этом выбирать и обычный, и параметрический вид, и даже задание в полярных координатах. Цвет и масштаб можно менять вручную. Вот так вводятся графики:

И такой график получается в итоге:

Из минусов можно заметить, что вводить, например, горизонтальные асимптоты не так просто: если в Desmos мы просто написали $x=2$, то здесь пришлось вводить параметрическую функцию $x(t)=2, y(t)=t$. Цвета и масштаб тоже пришлось подбирать вручную (иначе все графики оказались бы красными и мелкими).

Читайте также:  Как открыть файл nomedia на компьютере

Другие сайты

Еще несколько сервисов, которые обладают меньшим удобством/функциональностью, но тоже достойны внимания:

  • ru.numberempire.com Можно построить сразу несколько функций, цвета подбираются автоматически, график интерактивный (положение и масштаб меняются мышкой).
  • mathsolution.ru Можно строить несколько графиков, выбирая толщину линий и цвет, скрывать/отображать сетку, менять масштаб, сохранять картинки в файл.
  • easyto.me При построении нескольких графиков на одном поле предыдущие не редактируются. В остальном функции как у прежних: выбор цвета, толщины линии, масштаба чертежа.
  • grafikus.ru Кроме обычных графиков можно также строить трехмерные (3d). Можно построить несколько графиков разного типа (обычный,параметрический, в полярных координатах). Цвет и толщину линии выбрать нельзя. Интерактивности нет

Больше знаний: теория и практика

Еще немного ссылок для тех, кто хочет углубиться в тему. Первая ссылка на теоретический материал, где вы найдете и подробные примеры, и отсылки к предыдущим разделам теории (а исследовать функцию не зная пределов, производных, понятия непрерывности и т.п. нельзя) с не менее подробным объяснением. Все это сдобрено порцией юмора, отчего очень "съедобно" даже для полного чайника в математике: Исследование функций от Александра Емелина.

Вторая ссылка практическая, для тех, кто хочет научиться строить красивые графики в Desmos.com (см. выше описание): Полная инструкция по работе с Desmos. Эта инструкция довольно старая, с тех пор интерфейс сайта поменялся в лучшую сторону, но основы остались неизменными и помогут быстро разобраться с важными функциями сервиса.

Официальные инструкции, примеры и видео-инструкции на английском можно найти тут: Learn Desmos.

Решебник

Срочно нужна готовая задача? Более сотни разных функций с полным исследованием уже ждут вас. Подробное решение, быстрая оплата по SMS и низкая цена — около 50 рублей. Может, и ваша задача уже готова? Проверьте!

Полезные видео-ролики

Вебинар по работе с Desmos.com. Это уже полноценный обзор функций сайта, на целых 36 минут. К сожалению, он на английском языке, но базовых знаний языка и внимательности достаточно, чтобы понять большую часть.

Классный старый научно-популярный фильм "Математика. Функции и графики". Объяснения на пальцах в прямом смысле слова самых основ.

Стоит задача: провести полное исследование функции и построить ее график .

Каждый студент прошел через подобные задачи.

Дальнейшее изложение предполагает хорошее знание свойств и графиков основных элементарных функций. Рекомендуем обращаться к этому разделу при возникновении вопросов.

Алгоритм исследования функции состоит из следующих шагов.

Нахождение области определения функции.

Это очень важный шаг исследования функции, так как все дальнейшие действия будут проводиться на области определения.

В нашем примере нужно найти нули знаменателя и исключить их из области действительных чисел.

(В других примерах могут быть корни, логарифмы и т.п. Напомним, что в этих случаях область определения ищется следующим образом:
для корня четной степени, например, — область определения находится из неравенства ;
для логарифма — область определения находится из неравенства ).

Исследование поведения функции на границе области определения, нахождение вертикальных асимптот.

На границах области определения функция имеет вертикальные асимптоты, если односторонние пределы функции в этих граничных точках бесконечны.

В нашем примере граничными точками области определения являются .

Исследуем поведение функции при приближении к этим точкам слева и справа, для чего найдем односторонние пределы:

Так как односторонние пределы бесконечны, то прямые являются вертикальными асимптотами графика.

Исследование функции на четность или нечетность.

Функция является четной, если . Четность функции указывает на симметрию графика относительно оси ординат.

Функция является нечетной, если . Нечетность функции указывает на симметрию графика относительно начала координат.

Если же ни одно из равенств не выполняется, то перед нами функция общего вида.

В нашем примере выполняется равенство , следовательно, наша функция четная. Будем учитывать это при построении графика — он будет симметричен относительно оси oy .

Нахождение промежутков возрастания и убывания функции, точек экстремума.

Промежутки возрастания и убывания являются решениями неравенств и соответственно.

Точки, в которых производная обращается в ноль, называют стационарными.

Критическими точками функции называют внутренние точки области определения, в которых производная функции равна нулю или не существует.

ЗАМЕЧАНИЕ (включать ли критические точки в промежутки возрастания и убывания).

  • Некоторые авторы полагают, что промежутки возрастания и убывания являются решениями неравенств и . В этом случае критические точки не включаются в промежутки.
  • Некоторые авторы полагают, что точки, в которых функция определена, а конечной производной не имеет, нужно включать в промежутки возрастания и убывания (например, функция в точке х=0 определена, а производная в этой точке бесконечна , х=0 следует включить в промежуток возрастания функции).
  • По нашему мнению, принципиальной важности это не имеет, хотя и может стать причиной разногласий. Чтобы избежать конфликтов, УТОЧНЯЙТЕ У СВОЕГО ПРЕПОДАВАТЕЛЯ ЕГО ОТНОШЕНИЕ К ВКЛЮЧЕНИЮ КРИТИЧЕСКИХ ТОЧЕК В ПРОМЕЖУТКИ ВОЗРАСТАНИЯ И УБЫВАНИЯ. А еще лучше, ссылайтесь на математическую литературу, рекомендованную министерством образования РФ.
Читайте также:  Сканер или сканнер как правильно

Мы будем включать критические точки в промежутки возрастания и убывания, если они принадлежат области определения функции.

Таким образом, чтобы определить промежутки возрастания и убывания функции

  • во-первых, находим производную;
  • во-вторых, находим критические точки;
  • в-третьих, разбиваем область определения критическими точками на интервалы;
  • в-четвертых, определяем знак производной на каждом из промежутков. Знак «плюс» будет соответствовать промежутку возрастания, знак «минус» — промежутку убывания.

Находим производную на области определения (при возникновении сложностей, смотрите раздел дифференцирование функции, нахождение производной).

Находим критические точки, для этого:

  • Находим стационарные точки (они же нули числителя): в нашем примере ;
  • Находим нули знаменателя: .

Наносим эти точки на числовую ось и определяем знак производной внутри каждого полученного промежутка. Как вариант, можно взять любую точку из промежутка и вычислить значение производной в этой точке. Если значение положительное, то ставим плюсик над этим промежутком и переходим к следующему, если отрицательное, то ставим минус и т.д. К примеру, , следовательно, над первым слева интервалом ставим плюс.

Делаем вывод:

  • функция возрастает на промежутке и на промежутке ;
  • функция убывает на промежутке и на промежутке .

Схематично плюсами / минусами отмечены промежутки где производная положительна / отрицательна. Возрастающие / убывающие стрелочки показывают направление возрастания / убывания.

Точками экстремума функции являются точки, в которых функция определена и проходя через которые производная меняет знак.

В нашем примере точкой экстремума является точка х=0 . Значение функции в этой точке равно . Так как производная меняет знак с плюса на минус при прохождении через точку х=0 , то (0; 0) является точкой локального максимума. (Если бы производная меняла знак с минуса на плюс, то мы имели бы точку локального минимума).

Нахождение промежутков выпуклости и вогнутости функции и точек перегиба.

Промежутки вогнутости и выпуклости функции находятся при решениями неравенств и соответственно.

Иногда вогнутость называют выпуклостью вниз, а выпуклость – выпуклостью вверх.

Здесь также справедливы замечания, подобные замечаниям из пункта про промежутки возрастания и убывания.

Таким образом, чтобы определить промежутки вогнутости и выпуклости функции :

  • во-первых, находим вторую производную;
  • во-вторых, находим нули числителя и знаменателя второй производной;
  • в-третьих, разбиваем область определения полученными точками на интервалы;
  • в-четвертых, определяем знак второй производной на каждом из промежутков. Знак «плюс» будет соответствовать промежутку вогнутости, знак «минус» — промежутку выпуклости.

Находим вторую производную на области определения.

Далее ищем нули числителя и знаменателя.

В нашем примере нулей числителя нет, нули знаменателя .

Наносим эти точки на числовую ось и определяем знак второй производной внутри каждого полученного промежутка.

Делаем вывод:

  • функция выпуклая на промежутке ;
  • функция вогнутая на промежутке и на промежутке .

Точка называется точкой перегиба , если в данной точке существует касательная к графику функции и вторая производная функции меняет знак при прохождении через .

Другими словами, точками перегиба могут являться точки, проходя через которые вторая производная меняет знак, в самих точках либо равна нулю, либо не существует, но эти точки входят в область определения функции.

В нашем примере точек перегиба нет, так как вторая производная меняет знак проходя через точки , а они не входят в область определения функции.

Нахождение горизонтальных и наклонных асимптот.

Горизонтальные или наклонные асимптоты следует искать лишь тогда, когда функция определена на бесконечности.

Наклонные асимптоты ищутся в виде прямых , где и .

Если k=0 и b не равно бесконечности, то наклонная асимптота станет горизонтальной.

Кто такие вообще эти асимптоты?

Это такие линии, к которым приближается график функции на бесконечности. Таким образом, они очень помогают при построении графика функции.

Если горизонтальных или наклонных асимптот нет, но функция определена на плюс бесконечности и (или) минус бесконечности, то следует вычислить предел функции на плюс бесконечности и (или) минус бесконечности, чтобы иметь представление о поведении графика функции.

Для нашего примера

— горизонтальная асимптота.

На этом с исследование функции завершается, переходим к построению графика.

Вычисляем значения функции в промежуточных точках.

Для более точного построения графика рекомендуем найти несколько значений функции в промежуточных точках (то есть в любых точках из области определения функции).

Для нашего примера найдем значения функции в точках х=-2 , х=-1 , х=-3/4 , х=-1/4 . В силу четности функции, эти значения будут совпадать со значениями в точках х=2 , х=1 , х=3/4 , х=1/4.

Сначала строим асимптоты, наносим точки локальных максимумов и минимумов функции, точки перегиба и промежуточные точки. Для удобства построения графика можно нанести и схематическое обозначение промежутков возрастания, убывания, выпуклости и вогнутости, не зря же мы проводили исследование функции =).

Осталось провести линии графика через отмеченные точки, приближая к асимптотам и следуя стрелочкам.

Этим шедевром изобразительного искусства задача полного исследования функции и построения графика закончена.

Графики некоторых элементарных функций можно строить с использованием геометрических преобразований графиков основных элементарных функций.

Ссылка на основную публикацию
Adblock detector