Матричный метод решения систем калькулятор

Матричный метод решения систем калькулятор

Данный онлайн калькулятор решает систему линейных уравнений матричным методом. Дается очень подробное решение. Для решения системы линейных уравнений выберите количество переменных. Выбирайте метод вычисления обратной матрицы. Затем введите данные в ячейки и нажимайте на кнопку "Вычислить".

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Матричный метод решения систем линейных уравнений

Рассмотрим следующую систему линейных уравнений:

(1)

Для решения системы линейных уравнений (1) матричным методом запишем ее матричном виде:

Ax=b, (2)
(3)

Мы будем предполагать, что матрица A имеет обратное, т.е. определитель матрицы A не равен нулю.

Умножим матричное уравнение (2) на обратную матрицу A −1 . Тогда

A −1 Ax=A −1 b. (4)

Учитывая определение обратной матрицы, имеем A −1 A=E, где E— единичная матрица. Следовательно (4) можно записать так:

Ex=A −1 b. (4)

или, учитывая, что Ex=x:

x=A −1 b. (5)

Таким образом, для решения системы линейных уравнений (1) (или (2)), достаточно умножить обратную к A матрицу на вектор ограничений b.

Примеры решения системы линейных уравнений матричным методом

Пример 1. Решить следующую систему линейных уравнений матричным методом:

Матричный вид записи системы линейных уравнений: Ax=b, где

.

Найдем обратную к матрице A методом Жордана-Гаусса. С правой стороны матрицы A запишем единичную матрицу:

.

Выбираем самый большой по модулю ведущий элемент столбца 1. Для этого заменяем местами строки 1 и 2:

.

Исключим элементы 1-го столбца матрицы ниже главной диагонали. Для этого сложим строки 2,3 со строкой 1, умноженной на -1/3,-1/3 соответственно:

.

Выбираем самый большой по модулю ведущий элемент столбца 2. Для этого заменяем местами строки 2 и 3:

.

Исключим элементы 2-го столбца матрицы ниже главной диагонали. Для этого сложим строку 3 со строкой 2, умноженной на -24/51:

.

Исключим элементы 3-го столбца матрицы выше главной диагонали. Для этого сложим строки 1, 2 со строкой 3, умноженной на 17/53, 85/159 соответственно:

.

Исключим элементы 2-го столбца матрицы выше главной диагонали. Для этого сложим строку 1 со строкой 2, умноженной на -3/17:

.

Делим каждую строку матрицы на ведущий элемент соответствующей строки:

Читайте также:  Акустика technics sb 1000
.

Отделяем правую часть матрицы. Полученная матрица является обратной матрицей к A :

.

Обратная матрица найдена. Решение системы линейных уравнений имеет вид x=A−1b. Тогда

.

Пример 2. Решить следующую систему линейных уравнений матричным методом:

.

Матричный вид записи системы линейных уравнений: Ax=b, где

.

Найдем обратную к матрице A методом алгебраических дополнений. Вычислим определитель матрицы A :

.

Вычислим все алгебраические дополнения матрицы A:

,
,
,
,
,
,
,
,
.

Обратная матрица вычисляется из следующего выражения:

где Aij − алгебраическое дополнение элемента матрицы A, находящиеся на пересечении i-ой строки и j-ого столбца, а Δ − определитель матрицы A.

Используя формулу обратной матрицы, получим:

Обратная матрица найдена. Решение системы линейных уравнений имеет вид x=A −1 b. Тогда

Напомним, что решением системы линейных уравнений называется всякая совокупность чисел 1, x2, . xn> , подстановка которых в эту систему вместо соответствующих неизвестных обращает каждое уравнение системы в тождество.
Система линейных алгебраических уравнений обычно записывается как (для 3-х переменных):

2x1-3x2+x3 = 4
-x1+2x2+5x3 = 10
3x1-x2+3x3 = -1
или 2x-3y+z = 4
-z+2y+5z = 10
3x-y+3z = -1

См. также Решение матричных уравнений.

Алгоритм решения

  1. Вычисляется определитель матрицы A . Если определитель равен нулю, то конец решения. Система имеет бесконечное множество решений.
  2. При определителе отличном от нуля, через алгебраические дополнения находится обратная матрица A -1 .
  3. Вектор решения X =

1, x2, . xn> получается умножением обратной матрицы на вектор результата B .

Пример №1 . Найти решение системы матричным методом. Запишем матрицу в виде:

2 3 1
-2 1
1 2 -2

Вектор B:
B T = (3,-2,-1)
Система будет иметь решение, если определитель матрицы A отличен от нуля.
Найдем главный определитель.
∆ = 2•(1•(-2)-2•0)-(-2•(3•(-2)-2•1))+1•(3•0-1•1) = -21
Итак, определитель -21 ≠ 0, поэтому продолжаем решение. Для этого найдем обратную матрицу через алгебраические дополнения.
Транспонированная матрица

A T =
2 -2 1
3 1 2
1 -2

Алгебраические дополнения.

A1,1 = (-1) 1+1
1 2
-2
1,1 = (1•(-2)-0•2) = -2

A1,2 = (-1) 1+2
3 2
1 -2
1,2 = -(3•(-2)-1•2) = 8

A1,3 = (-1) 1+3
3 1
1
1,3 = (3•0-1•1) = -1

A2,1 = (-1) 2+1
-2 1
-2
2,1 = -(-2•(-2)-0•1) = -4

A2,2 = (-1) 2+2
2 1
1 -2
2,2 = (2•(-2)-1•1) = -5

A2,3 = (-1) 2+3
2 -2
1
2,3 = -(2•0-1•(-2)) = -2

A3,1 = (-1) 3+1
-2 1
1 2
3,1 = (-2•2-1•1) = -5

A3,2 = (-1) 3+2
2 1
3 2
3,2 = -(2•2-3•1) = -1

A3,3 = (-1) 3+3
2 -2
3 1
3,3 = (2•1-3•(-2)) = 8

Обратная матрица:

A -1 = -1/21
-2 8 -1
-4 -5 -2
-5 -1 8

Вектор результатов X = A -1 • B

X = -1/21
-2 8 -1
-4 -5 -2
-5 -1 8
·
3 -2 -1

X T = (1,0,1)
x1 = -21 / -21 = 1
x2 = 0 / -21 = 0
x3 = -21 / -21 = 1
Проверка:
2•1+3•0+1•1 = 3
-2•1+1•0+0•1 = -2
1•1+2•0+-2•1 = -1

Запишем матрицу в виде:

Вектор B:
B T = (1,2,3,4)
Главный определитель
Минор для (1,1):

= 3•(3•2-6•2)-5•(3•2-6•1)+7•(3•2-3•1) = 3
Определитель минора
∆ = 2•(-3)-3•0+5•3-4•3 = -3

Вектор результатов X
X = A -1 ∙ B

Пример №3 . Систему уравнений записать в матричной форме и решить ее с помощью обратной матрицы. Сделать проверку полученного решения.
Решение:xls

Пример №4 . Записать систему уравнений в матричной форме и решить с помощью обратной матрицы.
Решение:xls

Пример №5 . Дана система трех линейных уравнений с тремя неизвестными. Требуется: 1) найти ее решение с помощью формул Крамера; 2) записать систему в матричной форме и решить ее средствами матричного исчисления.
Методические рекомендации. После решения методом Крамера, найдите кнопку "Решение методом обратной матрицы для исходных данных". Вы получите соответствующее решение. Таким образом, данные вновь заполнять не придется.
Решение. Обозначим через А — матрицу коэффициентов при неизвестных; X — матрицу-столбец неизвестных; B — матрицу-столбец свободных членов:

-1 3
3 -2 1
2 1 -1

Вектор B:
B T =(4,-3,-3)
С учетом этих обозначений данная система уравнений принимает следующую матричную форму: А*Х = B.
Если матрица А — невырожденная (ее определитель отличен от нуля, то она имеет обратную матрицу А -1 . Умножив обе части уравнения на А -1 , получим: А -1 *А*Х = А -1 *B, А -1 *А=Е.
Это равенство называется матричной записью решения системы линейных уравнений. Для нахождения решения системы уравнений необходимо вычислить обратную матрицу А -1 .
Система будет иметь решение, если определитель матрицы A отличен от нуля.
Найдем главный определитель.
∆=-1•(-2•(-1)-1•1)-3•(3•(-1)-1•0)+2•(3•1-(-2•0))=14
Итак, определитель 14 ≠ 0, поэтому продолжаем решение. Для этого найдем обратную матрицу через алгебраические дополнения.
Пусть имеем невырожденную матрицу А:

A=
a11 a12 a13
a21 a22 a23
a31 a32 a33

Тогда:

A=1/∆
A11 A21 A31
A12 A22 A32
A13 A23 A33

где Aij — алгебраическое дополнение элемента aij в определителе матрицы А, которое является произведением (—1) i+j на минор (определитель) n-1 порядка, полученный вычеркиванием i-й строки и j-го столбца в определителе матрицы А.
Транспонированная матрица

A T =
-1 3 2
3 -2 1
1 -1

Вычисляем алгебраические дополнения.

A1,1=(-1) 1+1
-2 1
1 -1

1,1=(-2•(-1)-1•1)=1

A1,2=(-1) 1+2
3 1
-1

1,2=-(3•(-1)-0•1)=3

A1,3=(-1) 1+3
3 -2
1

1,3=(3•1-0•(-2))=3

A2,1=(-1) 2+1
3 2
1 -1

2,1=-(3•(-1)-1•2)=5

A2,2=(-1) 2+2
-1 2
-1

2,2=(-1•(-1)-0•2)=1

A2,3=(-1) 2+3
-1 3
1

2,3=-(-1•1-0•3)=1

A3,1=(-1) 3+1
3 2
-2 1

3,1=(3•1-(-2•2))=7

A3,2=(-1) 3+2
-1 2
3 1

3,2=-(-1•1-3•2)=7

A3,3=(-1) 3+3
-1 3
3 -2

3,3=(-1•(-2)-3•3)=-7
Обратная матрица

A -1 =1/14
1 3 3
5 1 1
7 7 -7

Вектор результатов X
X=A -1 • B

X=1/14
1 3 3
5 1 1
7 7 -7
·
4 -3 -3
X=1/14
-3))
X=1/14
-14
14
28

X T =(-1,1,2)
x1= -14 / 14=-1
x2= 14 / 14=1
x3= 28 / 14=2
Проверка.
-1•-1+3•1+0•2=4
3•-1+-2•1+1•2=-3
2•-1+1•1+-1•2=-3
doc:xls
Ответ: -1,1,2.

Пример №6 . Решить неоднородную систему линейных алгебраических уравнений методом обратной матрицы.

Используя этот онлайн калькулятор для решения систем линейных уравнений (СЛУ) матричным методом (методом обратной матрицы), вы сможете очень просто и быстро найти решение системы.

Воспользовавшись онлайн калькулятором для решения систем линейных уравнений матричным методом (методом обратной матрицы), вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на решения систем линейных уравнений, а также закрепить пройденный материал.

Решить систему линейных уравнений матричным методом

Изменить названия переменных в системе

Заполните систему линейных уравнений:

Ввод данных в калькулятор для решения систем линейных уравнений матричным методом

  • В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.
  • Для изменения в уравнении знаков с "+" на "-" вводите отрицательные числа.
  • Если в уравнение отсутствует какая-то переменная, то в соответствующем поле ввода калькулятора введите ноль.
  • Если в уравнение перед переменной отсутствуют числа, то в соответствующем поле ввода калькулятора введите единицу.

Например, линейное уравнение x 1 — 7 x 2 — x 4 = 2

будет вводится в калькулятор следующим образом:

Дополнительные возможности калькулятора для решения систем линейных уравнений матричным методом

  • Между полями для ввода можно перемещаться нажимая клавиши "влево", "вправо", "вверх" и "вниз" на клавиатуре.
  • Вместо x 1, x 2, . вы можете ввести свои названия переменных.

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

Ссылка на основную публикацию
Adblock detector