Постоянный магнит и переменный ток

Постоянный магнит и переменный ток

Сравним электромагниты переменного тока с электромагнитами постоянного тока. Такое сравнение даст возможность определить целесообразные области применения каждой из этих разновидностей электромагнитов.

Сила тяги электромагнитов

При заданной площади сечения полюсов, образующих рабочий воздушный зазор, средняя величина силы в электромагните переменного тока будет вдвое меньше силы в электромагните постоянного тока. Это относится в равной степени как к однофазной, так и к многофазным системам. Иными словами, использование стали в электромагните переменного тока по крайней мере в 2 раза хуже, чем в электромагните постоянного тока.

При заданных силе тяги и ходе якоря электромагнит переменного тока получается значительно большей массы, чем электромагнит постоянного тока, так как необходимо взять по крайней мере вдвое больше стали и существенно увеличить объем меди из-за того, что требуется иметь определенную величину мощности.

Необходимый минимум реактивной мощности. Потребляемая электромагнитом переменного тока в момент его включения реактивная мощность однозначно связана с величиной механической работы, которую требуется получить от этого электромагнита, и не может быть снижена путем увеличения его размеров. В электромагнитах постоянного тока такой связи нет, и если не касаться вопроса скорости действия, то потребляемая мощность может быть уменьшена соответствующим увеличением размеров.

Электромагниты переменного тока принципиально более быстродействующие, чем электромагниты постоянного тока обычной конструкции. Это объясняется тем, что электромагнитная постоянная времени у них обычно соизмерима с величиной одного периода переменного тока, а э. д. с. самоиндукции, возникающая при движении якоря, значительно ниже приложенного напряжения.

В электромагнитах постоянного тока время срабатывания может быть уменьшено путем специальных мер, сводящихся к снижению отношения напряжения самоиндукции к приложенному напряжению, уменьшению вихревых токов и т. д. Все это в конечном счете приводит к увеличению потребления электроэнергии, однако, как правило, при одинаковой производимой работе и равных временах срабатывания электромагнит постоянного тока обычно имеет меньшее потребление энергии, чем электромагнит переменного тока.

Влияние вихревых токов

Из-за необходимости предотвратить возникновение чрезмерных потерь от вихревых токов магнитопроводы электромагнитов переменного тока приходится выполнять шихтованными или разрезными, в то время как на постоянном токе это требуется только для быстродействующих электромагнитов.

Такое исполнение магнитопровода приводит к ухудшению заполнения объема сталью, а также предопределяет призматическую форму частей магнитопровода. Последнее вызывает увеличение длины среднего витка обмотки и приводит к некоторым конструктивным и технологическим недостаткам.

Потери на вихревые токи, а также на перемагничивание приводит к увеличению нагрева электромагнита. В электромагнитах постоянного тока все перечисленные выше ограничения отпадают.

Читайте также:  Исправление системных файлов windows 7

Области применения электромагнитов постоянного и переменного тока

В обычных стационарных промышленных установках, питающихся от сети переменного тока (частотой 50 Гц) достаточной мощности, многие из приведенных выше отрицательных моментов не являются препятствием для применения электромагнитов переменного тока.

Большее потребление реактивной мощности в начале хода существенно не отразится на других потребителях. Если в конце хода якоря электромагнита воздушные зазоры незначительны, потребляемая реактивная мощность при притянутом якоре будет невелика.

Сравним электромагниты переменного тока с электромагнитами постоянного тока. Такое сравнение даст возможность определить целесообразные области применения каждой из этих разновидностей электромагнитов.

Сила тяги электромагнитов

При заданной площади сечения полюсов, образующих рабочий воздушный зазор, средняя величина силы в электромагните переменного тока будет вдвое меньше силы в электромагните постоянного тока. Это относится в равной степени как к однофазной, так и к многофазным системам. Иными словами, использование стали в электромагните переменного тока по крайней мере в 2 раза хуже, чем в электромагните постоянного тока.

При заданных силе тяги и ходе якоря электромагнит переменного тока получается значительно большей массы, чем электромагнит постоянного тока, так как необходимо взять по крайней мере вдвое больше стали и существенно увеличить объем меди из-за того, что требуется иметь определенную величину мощности.

Необходимый минимум реактивной мощности. Потребляемая электромагнитом переменного тока в момент его включения реактивная мощность однозначно связана с величиной механической работы, которую требуется получить от этого электромагнита, и не может быть снижена путем увеличения его размеров. В электромагнитах постоянного тока такой связи нет, и если не касаться вопроса скорости действия, то потребляемая мощность может быть уменьшена соответствующим увеличением размеров.

Электромагниты переменного тока принципиально более быстродействующие, чем электромагниты постоянного тока обычной конструкции. Это объясняется тем, что электромагнитная постоянная времени у них обычно соизмерима с величиной одного периода переменного тока, а э. д. с. самоиндукции, возникающая при движении якоря, значительно ниже приложенного напряжения.

В электромагнитах постоянного тока время срабатывания может быть уменьшено путем специальных мер, сводящихся к снижению отношения напряжения самоиндукции к приложенному напряжению, уменьшению вихревых токов и т. д. Все это в конечном счете приводит к увеличению потребления электроэнергии, однако, как правило, при одинаковой производимой работе и равных временах срабатывания электромагнит постоянного тока обычно имеет меньшее потребление энергии, чем электромагнит переменного тока.

Читайте также:  Магнитола пионер с телефоном

Влияние вихревых токов

Из-за необходимости предотвратить возникновение чрезмерных потерь от вихревых токов магнитопроводы электромагнитов переменного тока приходится выполнять шихтованными или разрезными, в то время как на постоянном токе это требуется только для быстродействующих электромагнитов.

Такое исполнение магнитопровода приводит к ухудшению заполнения объема сталью, а также предопределяет призматическую форму частей магнитопровода. Последнее вызывает увеличение длины среднего витка обмотки и приводит к некоторым конструктивным и технологическим недостаткам.

Потери на вихревые токи, а также на перемагничивание приводит к увеличению нагрева электромагнита. В электромагнитах постоянного тока все перечисленные выше ограничения отпадают.

Области применения электромагнитов постоянного и переменного тока

В обычных стационарных промышленных установках, питающихся от сети переменного тока (частотой 50 Гц) достаточной мощности, многие из приведенных выше отрицательных моментов не являются препятствием для применения электромагнитов переменного тока.

Большее потребление реактивной мощности в начале хода существенно не отразится на других потребителях. Если в конце хода якоря электромагнита воздушные зазоры незначительны, потребляемая реактивная мощность при притянутом якоре будет невелика.

Магнитная система электромагнитов постоянного и переменного тока различная. У электромагнита постоянного тока относительно небольшой зазор d, а сам магнитопровод может быть выполнен из сплошного цельного куска электротехнической стали.

У магнитов переменного тока система шихтованная, набранная из тонких листов электротехнической стали.

Так как через катушку протекает переменный ток, то и магнитный поток Ф изменяет свое направление и в какие то моменты времени становится равным нулю. В этом случае противодействующая пружина будет отрывать якорь от полюсного наконечника и возникнет дребезг якоря. Для устранения этого явления используются либо многофазовые электромагниты, либо короткозамкнутое кольцо, которое устанавливается на расщепленной части полюсного наконечника. Так как у катушек переменного тока определяющим является индуктивное сопротивление, а оно зависит от индуктивности, то в первоначальный момент , когда рабочий зазор d максимален и индуктивность минимальна, ток якоря максимален, то есть имеется бросок тока через катушку. При минимальном зазоре, когда якорь соприкоснется с полюсным наконечником, индуктивность возрастет и ток возрастет.

В электромагнитах переменного тока магнитное сопротивление зависит не только от , l, S сердечника, но и от потерь в стали и наличия короткозамкнутых обмоток, расположенных на сердечнике.

Катушка электромагнита постоянного тока выполняется достаточно высокой и тонкой, для улучшения условий охлаждения (потери мощности на постоянном токе только на чисто активном сопротивлении проводника).

Катушка электромагнита переменного тока выполняется более низкой, т.к. кроме потерь мощности в активном и индуктивном сопротивлении катушки имеются потери мощности на перемагничивание сердечника.

Читайте также:  Via hd audio deck не открывается

Как известно в электромагнитах переменного тока ток в обмотке сильно зависит от положения якоря. В клапанных элек­тромагнитах ток в притянутом состоянии в десятки раз меньше, чем при отпущенном якоре. Это затрудняет создание максимальных реле напряжения на базе клапанной системы, так как при напря­жениях, близких к напряжению срабатывания, через обмотку про­текает большой ток, выделяется мощность, в сотни раз превышаю­щая мощность в обмотке при притянутом якоре. Приходится сильно увеличивать габариты катушки, чтобы рассеивать большую мощ­ность, выделяемую при отпущенном якоре. Большим преимуществом реле серии ЭН является относительно небольшое изменение маг­нитной проводимости, в результате чего ток в обмотках мало ме­няется при повороте якоря. Это дает возможность иметь малые га­бариты обмоток.

Если отрывное усилие электромагнита будет РОТР, то дважды за период в точке А (рис. 6, в) якорь электромагнита будет от­падать, а в точке В — снова притягиваться, т. е. будет вибрировать с двойной частотой. Вибрация приводит к износу магнитной сис­темы и сопровождается гудением.

­

Рис.6. Кривая изменения силы притяжения электромагнита

переменного тока без короткозамкнутого витка.

Для устранения вибрации электромагни­ты переменного тока снабжаются короткозамкнутыми витками (рис.7, а) из проводниковых материалов (медь, латунь), охватывающими часть полюса электромагнита (70 — 80%).

Принцип работы витка заключается в следующем. Общий поток электро­магнита Ф разветвляется на поток Ф1, который проходит по не охваченной витком части полюса, и на поток Ф2, который проходит через часть, охва­тываемую короткозамкнутым витком. При этом в витке индуцируется ЭДС еК.З, и возникает ток iК.З., сдвинутый по отношению к еК.З. на угол

Рис.7. Принцип работы короткозамкнутого витка

в электромагнитных системах переменного тока.

и опре­деляемый весьма незначительной индуктивностью витка. Для упрощения принимаем = 0. Ток iК.З , возбуждает магнитный поток ФК.З., который охватывает короткозамкнутый виток и вместе с частью основного потока образует поток Ф2,проходящий через часть полюса, охваченную витком, и сдвинутый во вре­мени по отношению к потоку Ф1 на угол (рис.7, б и в).

Сила притяжения электромагнита Р складывается из двух пульсирующих, но сдвинутых во времени сил Р± и Р2 (рис.7, г). Благодаря сдвигу их во времени общая сила Р пульсирует много меньше и минимальное значение ее остается выше РОТР, чем и исключается вибрация якоря.

Ссылка на основную публикацию
Adblock detector