Сопротивление резистора от температуры

Сопротивление резистора от температуры

Сопротивление металлических и проволочных резисторов зависит от температуры. При этом зависимость от температуры практически линейная R=R+α(t-t). Коэффициент α называют температурным коэффициентом сопротивления. Такая зависимость сопротивления от температуры позволяет использовать резисторы в качестве термометров. Сопротивление полупроводниковых резисторов может зависеть от температуры сильнее, возможно, даже экспоненциально однако в практическом диапазоне температур и эту экспоненциальную зависимость можно заменить линейной.

Сверхпроводимость — физическое явление, заключающееся в скачкообразном падении до нуля сопротивления вещества при критической температуре.

Сверхпроводник — вещество, которое может переходить в сверхпроводящее состояние. Ток в сверхпроводнике может протекать неограниченно долгое время из-за отсутствия сопротивления.

Свойством сверхпроводимости обладают около половины металлов и свыше тысячи сплавов и соединений металлов. Интересно, что такие металлы, как серебро, медь, золото, платина, являющиеся хорошими проводниками при Т = 293 К, не переходят в сверхпроводящее состояние. При комнатной температуре сопротивление сверхпроводника больше сопротивления проводника.

Последовательное соединение резисторов.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8953 — | 7622 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

В своей практической деятельности каждый электрик встречается с разными условиями прохождения носителей зарядов в металлах, полупроводниках, газах и жидкостях. На величину тока влияет электрическое сопротивление, которое различным образом изменяется под влиянием окружающей среды.

Одним из таких факторов является температурное воздействие. Поскольку оно значительно изменяет условия протекания тока, то учитывается конструкторами в производстве электрооборудования. Электротехнический персонал, участвующий в обслуживании и эксплуатации электроустановок, обязан грамотно использовать эти особенности в практической работе.

Влияние температуры на электрическое сопротивление металлов

В школьном курсе физики предлагается провести такой опыт: взять амперметр, батарейку, отрезок проволоки, соединительные провода и горелку. Вместо амперметра с батарейкой можно подключить омметр или использовать его режим в мультиметре.

Далее необходимо собрать электрическую схему, показанную на картинке и замерить величину тока в цепи. Его значение показано на шкале миллиамперметра стрелкой черного цвета.

Теперь поднесем пламя горелки к проволоке и станем ее нагревать. Если смотреть на амперметр, то будет видно, что стрелка станет перемещаться влево и достигнет положения, отмеченного красным цветом.

Результат опыта демонстрирует, что при нагревании металлов их проводимость уменьшается, а сопротивление возрастает.

Математическое обоснование этого явления приведено формулами прямо на картинке. В нижнем выражении хорошо видно, что электрическое сопротивление «R» металлического проводника прямо пропорционально его температуре «Т» и зависит еще от нескольких параметров.

Как нагрев металлов ограничивает электрический ток на практике

Ежедневно при включении освещения мы встречаемся с проявлением этого свойства у ламп накаливания. Проведем несложные измерения на лампочке с мощностью 60 ватт.

Самым простым омметром, питающемся от низковольтной батарейки 4,5 V, замерим сопротивление между контактами цоколя и увидим значение 59 Ом. Этой величиной обладает нить накала в холодном состоянии.

Вкрутим лампочку в патрон и через амперметр подключим к ней напряжение домашней сети 220 вольт. Стрелка амперметра покажет 0,273 ампера. По закону Ома для участка цепи определим сопротивление нити в нагретом состоянии. Оно составит 896 Ом и превысит предыдущее показание омметра в 15,2 раза.

Такое превышение предохраняет металл тела накала от перегорания и разрушения, обеспечивая его длительную работоспособность под напряжением.

Переходные процессы при включении

При работе нити накала на ней создается тепловой баланс между нагревом от проходящего электрического тока и отводом части тепла в окружающую среду. Но, на первоначальном этапе включения при подаче напряжения возникают переходные процессы, создающие бросок тока, который может привести к перегоранию нити.

Переходные процессы протекают за короткое время и вызваны тем, что скорость возрастания электрического сопротивления от нагрева металла не успевает за увеличением тока. После их окончания устанавливается рабочий режим.

Во время длительного свечения лампы постепенно толщина ее нити доходит до критического состояния, которое приводит к перегоранию. Чаще всего этот момент возникает при очередном новом включении.

Для продления ресурса лампы различными способами уменьшают этот бросок тока, используя:

1. устройства, обеспечивающие плавную подачу и снятие напряжения;

2. схемы последовательного подключения к нити накала резисторов, полупроводников или терморезисторов (термисторов).

Пример одного из способов ограничения пускового тока для автомобильных светильников показан на картинке ниже.

Здесь ток на лампочку подается после включения тумблера SA через предохранитель FU и ограничивается резистором R, у которого номинал подбирается так, чтобы бросок тока во время переходных процессов не превышал номинальное значение.

При нагреве нити накала ее сопротивление возрастает, что ведет к увеличению разности потенциалов на ее контактах и параллельно подключенной обмотке реле KL1. Когда напряжение достигнет величины уставки реле, то нормально открытый контакт KL1 замкнется и зашунтирует резистор. Через лампочку начнет протекать рабочий ток уже установившегося режима.

Читайте также:  Сразу короткие гудки при звонке

Влияние температуры металла на его электрическое сопротивление используется в работе измерительных приборов. Их называют термометрами сопротивления.

Их чувствительный элемент выполняют тонкой проволочкой из металла, сопротивление которой тщательно замерено при определенных температурах. Эту нить монтируют в корпусе со стабильными термическими свойствами и закрывают защитным чехлом. Созданная конструкция помещается в среду, температуру которой необходимо постоянно контролировать.

На выводы чувствительного элемента монтируются провода электрической схемы, которыми подключается цепь замера сопротивления. Его величина пересчитывается в значения температуры на основе ранее произведенной калибровки прибора.

Бареттер — стабилизатор тока

Так называют прибор, состоящий из стеклянного герметичного баллона с газообразным водородом и металлической проволочной спиралью из железа, вольфрама или платины. Эта конструкция по внешнему виду напоминает лампочку накаливания, но она обладает специфической вольт-амперной нелинейной характеристикой.

На ВАХ в определенном ее диапазоне образуется рабочая зона, которая не зависит от колебаний приложенного на тело накала напряжения. На этом участке бареттер хорошо компенсирует пульсации питания и работает в качестве стабилизатора тока на подключенной последовательно к нему нагрузке.

Работа бареттера основана на свойстве тепловой инерции тела накала, которая обеспечивается маленьким сечением нити и высокой теплопроводностью окружающего ее водорода. За счет этого при снижении напряжения на приборе ускоряется отвод тепла с его нити.

Это основное отличие бареттера от осветительных ламп накаливания, в которых для поддержания яркости свечения стремятся уменьшить конвективные потери тепла с нити.

В обычных условиях среды при охлаждении металлического проводника происходит уменьшение его электрического сопротивления.

При достижении критической температуры, близкой к нулю градусов по системе измерения Кельвина, происходит резкое падение сопротивления до нулевого значения. На правой картинке показана такая зависимость для ртути.

Это явление, названное сверхпроводимостью, считается перспективной областью для исследований с целью создания материалов, способных значительно снизить потери электроэнергии при ее передаче на огромные расстояния.

Однако, продолжающиеся изучения сверхпроводимости выявили ряд закономерностей, когда на электрическое сопротивление металла, находящегося в области критических температур, влияют другие факторы. В частности, при прохождении переменного тока с повышением частоты его колебаний возникает сопротивление, величина которого доходит до диапазона обычных значений у гармоник с периодом световых волн.

Влияние температуры на электрическое сопротивление/проводимость газов

Газы и обычный воздух являются диэлектриками и не проводят электрический ток. Для его образования нужны носители зарядов, которыми выступают ионы, образующиеся в результате воздействия внешних факторов.

Нагрев способен вызвать ионизацию и движение ионов от одного полюса среды к другому. Убедиться в этом можно на примере простого опыта. Возьмем то же оборудование, которым пользовались для определения влияния нагрева на сопротивление металлического проводника, только вместо проволоки к проводам подключим две металлические пластины, разделенные воздушным пространством.

Подсоединенный к схеме амперметр покажет отсутствие тока. Если между пластинами поместить пламя горелки, то стрелка прибора отклонится от нулевого значения и покажет величину проходящего через газовую среду тока.

Таким образом установили, что в газах при нагревании происходит ионизация, приводящая к движению электрически заряженных частиц и снижению сопротивления среды.

На значении тока сказывается мощность внешнего приложенного источника напряжения и разность потенциалов между его контактами. Она способна при больших значениях пробить изоляционный слой газов. Характерным проявлением подобного случая в природе является естественный разряд молнии во время грозы.

Примерный вид вольт-амперной характеристики протекания тока в газах показан на графике.

На начальном этапе под действие температуры и разности потенциалов наблюдается рост ионизации и прохождение тока примерно по линейному закону. Затем кривая приобретает горизонтальное направление, когда увеличение напряжения не вызывает рост тока.

Третий этап пробоя наступает тогда, когда высокая энергия приложенного поля так разгоняет ионы, что они начинают соударяться с нейтральными молекулами, массово образуя из них новые носители зарядов. В результате ток резко возрастает, образуя пробой диэлектрического слоя.

Практическое использование проводимости газов

Явление протекания тока через газы используется в радиоэлектронных лампах и люминесцентных светильниках.

Для этого внутри герметичного стеклянного баллона с инертным газом располагают два электрода:

У люминесцентной лампы они выполнены в виде нитей накала, которые разогреваются при включении для создания термоэлектронной эмиссии. Внутренняя поверхность колбы покрыта слоем люминофора. Он излучает видимый нами спектр света, образующийся при инфракрасном облучении, исходящем от паров ртути, бомбардируемых потоком электронов.

Ток газового разряда возникает при приложении напряжения определенной величины между электродами, расположенными по разным концам колбы.

Когда одна из нитей накала перегорит, то на этом электроде нарушится электронная эмиссия и лампа гореть не будет. Однако, если увеличить разность потенциалов между катодом и анодом, то снова возникнет газовый разряд внутри колбы и свечение люминофора возобновится.

Это позволяет использовать светодиодные колбы с нарушенными нитями накала и продлять их ресурс работы. Только следует учитывать, что при этом в несколько раз надо поднять на ней напряжение, А это значительно повышает потребляемую мощность и риски безопасного использования.

Влияние температуры на электрическое сопротивление жидкостей

Прохождение тока в жидкостях создается в основном за счет движения катионов и анионов под действием приложенного извне электрического поля. Лишь незначительную часть проводимости обеспечивают электроны.

Читайте также:  Как войти в сервисное меню телевизора филипс

Влияние температуры на величину электрического сопротивления жидкого электролита описывается формулой, приведенной на картинке. Поскольку в ней значение температурного коэффициента α всегда отрицательно, то с увеличением нагрева проводимость возрастает, а сопротивление падает так, как показано на графике.

Это явление необходимо учитывать при зарядке жидкостных автомобильных (и не только) аккумуляторных батарей.

Влияние температуры на электрическое сопротивление полупроводников

Изменение свойств полупроводниковых материалов под воздействием температуры позволило использовать их в качестве:

Таким названием обозначают полупроводниковые приборы, изменяющие свое электрическое сопротивление под влиянием тепла. Их температурный коэффициент сопротивления (ТКС) значительно выше, чем у металлов.

Величина ТКС у полупроводников может иметь положительное или отрицательное значение. По этому параметру их разделяют на позитивные «РТС» и негативные «NTC» термисторы. Они обладают различными характеристиками.

Для работы терморезистора выбирают одну из точек на его вольт-амперной характеристике:

линейный участок применяют для контроля температуры либо компенсации изменяющихся токов или напряжений;

нисходящая ветвь ВАХ у элементов с ТКС

Применение релейного терморезистора удобно при контроле или измерениях процессов электромагнитных излучений, происходящих на сверхвысоких частотах. Это обеспечило их использование в системах:

1. контроля тепла;

2. пожарной сигнализации;

3. регулирования расхода сыпучих сред и жидкостей.

Кремниевые терморезисторы с маленьким ТКС>0 используют в системах охлаждения и стабилизации температуры транзисторов.

Эти полупроводники работают на основе явления Зеебека: при нагреве спаянного места двух разрозненных металлов на стыке замкнутой цепи возникает ЭДС. Таким способом они превращают тепловую энергию в электричество.

Конструкцию из двух таких элементов называют термопарой. Ее КПД лежит в пределах 7÷10%.

Термоэлементы используют в измерителях температур цифровых вычислительных устройств, требующих миниатюрные габариты и высокую точность показаний, а также в качестве маломощных источников тока.

Полупроводниковые нагреватели и холодильники

Они работают за счет обратного использования термоэлементов, через которые пропускают электрический ток. При этом на одном месте спая происходит его нагрев, а на противоположном — охлаждение.

Полупроводниковые спаи на основе селена, висмута, сурьмы, теллура позволяют обеспечить разность температур в термоэлементе до 60 градусов. Это позволило создать конструкцию холодильного шкафа из полупроводников с температурой в камере охлаждения до -16 градусов.

Температурный коэффициент сопротивления резистора

Так как под воздействием температуры окружающей среды или из-за нагрева самого резистора удельное сопротивление его резистивного слоя может меняться, то для обозначения термостабильности резисторов ввели такое понятие, как температурный коэффициент сопротивления (ТКС).

В зарубежной документации он именуется, как TCR (Temperature Coefficient of Resistance).

ТКС показывает насколько меняется сопротивление резистора при изменении температуры на 1°С или 1° Кельвина. Так как температура может меняться в большую или меньшую сторону, то указывается знак "±". Начальной температурой считается +25°С (комнатная), если другое значение не оговаривается отдельно.

Формула расчёта ТКС.

TCR – температурный коэффициент сопротивления (ТКС), (ppm/°С);

R1 – сопротивление при комнатной температуре +25°С, (Ω);

R2 – сопротивление при рабочей температуре, (Ω);

T1 – комнатная температура (+25°С);

T2 – рабочая температура при которой производится тестовое измерение, (°С).

Данную формулу также нередко записывают и в сокращённом виде:

В отечественной литературе и документации ТКС может иметь сокращение 1×10 6 (1/°С), 1×10 6 °С -1 или 1×10 -6 °С. Также стоит иметь ввиду, что в документации на отечественные компоненты начальной температурой (T1) нередко считается +20°С, а не +25°С, как это принято в иностранной документации.

Что такое ± ppm/°С ?

За рубежом принято использовать сокращение ppm (Parts per million – одна миллионная часть). Считается, что такая запись гораздо удобнее, чем 1×10 -6 .

В технической документации на импортные резисторы температурный коэффициент может указываться как в градусах (± ppm/°С), так и в Кельвинах (± ppm/K). Это одно и то же.

Чтобы представить, что же такое ppm/°С в более наглядном виде, приведу пример.

Допустим, что у нас имеется резистор сопротивлением 1000000 Ω (один миллион Ом, или МегаОм – 1 МОм). Мы знаем, что его температурный коэффициент равен ±25 ppm/°С. Так как 25 – это количество частей от одного миллиона, то получаем 25/1000000 = 0,000025. Умножаем 0,000025 на 1000000 (номинал нашего резистора), чтобы узнать, каково же будет изменение в Омах. Получаем 25. То есть это всего 25 Ом от нашего мегаомного резистора. Именно на такую величину изменится сопротивление нашего резистора, если температура поднимется на 1°С. Тогда его результирующее сопротивление составит 1000000 (Ω) + 25 (Ω) = 1000025 (Ω).

Обращаю внимание на то, что ppm не имеет размерности. Тут речь идёт именно о долях от чего либо, в данном случае миллиона!

В процентах это будет 0,000025 × 100% = 0,0025%. То есть сопротивление резистора изменится на 0,0025% по отношению к первоначальному (1 Мом).

Другой пример, более приближённый к практике.

Имеется резистор на 56 килоОм (56 000 Ом). Его температурный коэффициент составляет ±50 ppm/°С. Давайте рассчитаем, в каких пределах будет меняться его сопротивление при изменении температуры на ±10°С. То есть при охлаждении на 10°С, так и нагреве на 10°С. Диапазон изменения температуры в данном случае составит 20°С.

Читайте также:  Amd phenom ii x4 945 драйвера

Как уже говорилось, стартовой температурой отсчёта считается +25°С. Именно при такой температуре наш резистор имеет сопротивление 56 кОм.

Сначала узнаем, насколько изменится сопротивление нашего резистора при изменении температуры на 1°С. Считать будем по следующей формуле. Наверняка уже заметили, что это та же самая формула расчёта ТКС, только изменённая.

ΔR – величина, на которое изменится сопротивление (в Омах, Ω);

R – сопротивление резистора при +25°С (комнатная температура);

TCR – величина ТКС резистора (±50×10 -6 °С или то же самое ±50 ppm/°С);

ΔT – изменение температуры, °С. В нашем случае, это 1°С.

Таким образом мы узнали, что при изменении температуры на 1 градус, сопротивление нашего резистора изменится на 2,8 Ом. Соответственно, при изменении температуры на 10°С, сопротивление изменится на 28 Ом. В результате получаем диапазон изменения сопротивления от 55972 Ом (при 15°С) до 56 028 Ом (при 35°С). Как видим, наш резистор имеет очень хорошую термостабильность. Его сопротивление меняется незначительно, особенно, если учесть тот факт, что среди резисторов много и таких, у которых ТКС равен 100. 300 ppm/°С.

В технической документации на серию резисторов, величина ТКС, как правило, указывается для определённого диапазона температуры (например, от -55 до +125°С). Можно заметить, что чем он шире, тем, как правило, величина ТКС больше.

Как пример, далее показан график, взятый из даташита на серию резисторов VSMP от Vishay. На нём показаны значения T.C.R для разных температурных диапазонов.

Также величина ТКС может указываться вот в таком формате: -200

+600 ppm/°С. Это означает, что при понижении температуры резистор ведёт себя более стабильней, и его сопротивление изменяется меньше, чем при её повышении.

Можно заметить и то, что для конкретного диапазона сопротивлений указывается своя величина T.C.R.

Величина ТКС не указывается в маркировке резисторов. Узнать его можно из технической документации на конкретную серию резисторов. Надо отметить, что ТКС резистора сильно зависит от материала, из которого изготовлен его резистивный слой, а также технологии его производства.

Далее для сравнения приведены величины ТКС для резисторов с разной резистивной основой и технологией производства.

Тип резистора и его температурный коэффициент сопротивления:

Самым большим (и плохим) температурным коэффициентом обладают резисторы с проводящим слоем на основе углерода. Их ТКС может достигать 5000 ppm/°С! Резисторы на основе углеродной проводящей плёнки (carbon film resistors) имеют ТКС в диапазоне 200. 500 ppm/°С (CF-25, CF-100 и им подобные). Именно поэтому допуск (точность) таких резисторов редко меньше 5%.

Металлоплёночные (серия MF, например, MF-100). Их TCR обычно лежит в диапазоне ±15. 100 ppm/°С, но в некоторых случаях вплоть до 10 ppm/°С. На фото – металлоплёночные прецизионные резисторы серии RN (Military). Нашёл их на печатной плате от промышленного станка. ТКС резистора RN55E – 25 ppm/°С, а RN55D – 100 ppm/°С.

Металлооксидные плёночные резисторы (серия MO, например, MO-200) имеют ТКС в диапазоне 100. 200 ppm/°С.

На фото показаны металлооксидные (металлодиэлектрические) резисторы МО-200 (160Ω, 5%). Их ТКС равен 200 ppm/°С;

Толстоплёночные чип-резисторы (T.C.R составляет 50. 200 ppm/°С, реже 300 ppm/°С);

Тонкоплёночные чип-резисторы (ТКС составляет 5. 50 ppm/°С). Это одни из самых термостабильных резисторов. Малым ТКС обладают тонкоплёночные прецизионные резисторы. Он может составлять всего ±2–5 ppm/°С. В документации на такие резисторы можно встретить обозначение Low TCR – низкий ТКС;

Проволочные резисторы (серия KNP, "цементные" SQP). ТКС составляет ±300. 350 ppm/°С (для диапазона температур от -55 до 155. 250°С). Низким температурным коэффициентом менее 10 ppm/°С обладают проволочные прецизионные резисторы;

Самым малым ТКС обладают фольговые резисторы (Bulk Metal ® Foil, BMF). Это самые термостабильные из всех существующих резисторов. Например, ультрамалый ТКС (всего 0,05 ppm/°С) имеют прецизионные фольговые резисторы серии VSMP Vishay (сверхточные фольговые резисторы для поверхностного монтажа).

Далее на фото показаны фольговые резисторы Vishay VSR. Их максимальный ТКС составляет ±4 ppm/°С в температурном диапазоне от 0°С до +60°С и ±8 ppm/°С при температуре от -55°С до +125°С.

Стоит отметить, что величина ТКС очень сильно влияет на тот самый допуск (или точность) резистора, которую указывают в процентах и кодируют в его маркировке (0,5%, 1%, 2%, 5%).

Напомню, что допуск указывает на разброс реального сопротивления резистора, который образуется из-за многих факторов, например, из-за погрешности технологии производства. Сюда же входит и разброс сопротивления из-за наличия ТКС. Именно поэтому, у резисторов с плохой термостабильностью (например, углеродистых) допуск также очень большой, так как при массовом производстве очень трудно сделать его меньше 2. 5%.

Аналогичная ситуация обстоит и с толстоплёночными SMD-резисторами. В составе резистивной пасты, которая используется для формирования проводящего слоя, присутствует серебро, из-за которого ТКС таких резисторов, как правило, не менее 50 ppm/°С.

Ссылка на основную публикацию
Adblock detector