Составить уравнения плоскостей делящих пополам двугранные углы

Составить уравнения плоскостей делящих пополам двугранные углы

УСЛОВИЕ:

Составьте уравнения плоскостей делящих пополам двугранные углы, образованные плоскостями x-2y+2z+6=0 и 4x+2y-4z+5=0

РЕШЕНИЕ:

ОТВЕТ:

Добавил slava191 , просмотры: ☺ 11785 ⌚ 05.01.2015. математика 1k класс

Решения пользователей

РЕШЕНИЕ ОТ vk54215494

"..Мы всю левую часть умножили на 2."
для чего, почему и всегда ли так нужно делать?

Написать комментарий

Делим обе части равенства на π

и умножаем на 4

frac<pi x><4>=(-1)^frac<pi ><4>+pi k, k in Z
Можно правую часть записать в виде двух ответов:

x=1+8n in Z : это . [b] -15; -7; 1; 9; 17; ..[/b].

x=3+ 8n, n in Z : это[b] -13; -5; 3; 11; . [/b]

[b]x=-5 — наибольшее отрицательное [/b]

О т в е т. x=1+8n in Z или x=3+ 8n, n in Z

корни чередуются так:

. -15;-13;-7;-5; 1;3; 9;11; 17; 19; .

[b]x=-5 — наибольшее отрицательное [/b] (прикреплено изображение)

a=1 — старший коэффициент
b=1 — средний коэффициент
с=-2 — свободный член

4.
x^2=a-5
При a-5=0 ⇒ при а=5
уравнение имеет один корень х=0

5.
Δ Прямоугольный, так как верно равенство: b^2=a^2+c^2
5^2=3^2+4^2
25=9+16
Значит, ∠ B=90 градусов и ∠ А+ ∠ С=90 градусов.

∠ А- ∠ С=36 градусов.
∠ А+ ∠ С=90 градусов.

складываем оба равенства:

2* ∠ А=126 градусов.

По формулам приведения:

sin^2x+sinx-2=0
D=9
sinx=-2 или sinx=1

sinx=-2 уравнение не имеет корней, -1 ≤ sinx ≤ 1

sinx=1 ⇒ x=(π/2)+2πk, k ∈ Z или х=90 ° +360 ° *k, k ∈ Z

Найдем корни, принадлежащие указанному отрезку с помощью неравенства:

-286 ° ≤ 90 ° +360 ° *k ≤ 204 °

-286 °-90 ° ≤ 360 ° *k ≤ 204 ° -90 °

-376 ° ≤ 360 ° *k ≤ 114 °

Читайте также:  Logitech руль и педали драйвера

Неравенство верно при k=[green]-1[/green] и k=[red]0[/red]

Значит, указанному отрезку принадлежат два корня:

x=90 ° +360 °* ([green]-1[/green])=-270 °

x=90 ° +360 °*[red]0[/red]=90 °

7. KT- средняя линия трапеции:

Cредняя линия трапеции делит высоту трапеции пополам ( см. рис)

Высоты треугольников АКО и СОК равны половине высоты трапеции

S_( Δ АКО)+S_( Δ COK)=44

S_( Δ АКО)+S_( Δ COK)=KO*(h/4) +OT*(h/4)=

О т в е т. [b]176[/b]

B=-2
[i]l[/i]=8 — количество ребер четырехугольной пирамиды

Задание: cоставить уравнение плоскости(u), делящей пополам острый двугранный угол, образованный плоскостью(p1) 3x-4y+6z-2=0 с координатной плоскостью Oyz.

Окей, вторая плоскость(p2) получается задается уравнением By+Cz=0. Произвольная точка М(x0,y0,z0) принадлежит искомой плоскости только тогда, когда d(M,p1)=d(M,p2), то есть расстояния от точки, до заданных плоскостей плоскостей одинаковые, составила уравнение: $$ frac<|3x-4y+6z-2|> < sqrt<61>> = frac<|By+Cz|> < sqrt<2>+ C^<2>> > $$

Ответ должен быть(дан в пособии) $$ (3-sqrt<61>)x-4y+6z-2=0$$ что явно не получится из того уравнения, что я составила. Как можно решить данную задачу?

задан 19 Окт 19:58

Условие надо хотя бы верно записывать. Наверняка так:

Угол, образованный плоскостью $% ; (p1): 3x-4y+6z-2=0 ;$% с координатной плоскостью $%Oyz$%.

@KristinaM: вторая плоскость, то есть Oyz, задаётся уравнением x=0. Поэтому никаких B, C там нет, а будет просто |x|. Тогда после раскрытия модулей возникнут две плоскости. Одна — та, что из ответа. Другая — ей перпендикулярная. По идее, там надо распознать, какая именно из этих плоскостей подходит, то есть какие углы будет острыми. Это легко проверить при помощи рассмотрения векторов нормали к плоскостям и их скалярных произведений.

К слову сказать, By+Cz=0 есть семейство плоскостей, проходящих через ось Ox.

1 ответ

Нормали к плоскостям равной длины: $%;vec=(3; -4; 6); ; vec=(sqrt<61>; 0; 0),;$% угол между которыми острый. Тогда нормаль к биссекторной плоскости: $% ; vec=(3+sqrt<61>; -4; 6);-$% сумма нормалей.
Стало быть, уравнение: $%; (3+sqrt<61>)x -4y+ 6z-2=0, ;$% учитывая точку $%(0; 1; 1)$%.

Читайте также:  Модем xdsl zyxel keenetic plus dsl

Для того, чтобы оценить ресурс, необходимо авторизоваться.

В учебно-методическом пособии излагаются теоретические основы аналитической геометрии в пространстве, приводятся решения большого числа задач. Пособие содержит варианты задач (с ответами) для самостоятельного решения, список формул и рекомендуемой литературы. Рекомендовано Уральским отделением Учебно-методического объединения вузов РФ в области строительного образования в качестве учебного пособия для студентов строительных специальностей направления 6533500 "Строительство" всех форм обучения. Подготовлено кафедрой высшей математики УГТУ-УПИ.

Ссылка на основную публикацию
Adblock detector