Список межпланетных космических аппаратов

Список межпланетных космических аппаратов

Самые впечатляющие программы по исследованию внешних планет

Текст

Отправка аппаратов к Марсу и Венере стали обыденностью для исследователей NASA и ЕКА. СМИ всего мира, включая Look At Me, последнее время подробно освещают приключения марсоходов Curiosity и Opportunity. Однако исследования внешних планет требуют намного большего терпения от учёных. Ракеты-носители пока не имеют достаточной мощности, чтобы отправить массивные космические аппараты непосредственно к планетам-гигантам. Поэтому учёным приходится довольствоваться компактными зондами, которые должны использовать так называемые гравитационные манёвры по облёту Земли и Венеры, чтобы получить достаточный импульс для полёта к поясу астероидов и за его пределы. Преследование астероидов и комет является ещё более сложной задачей, так как у этих объектов нет достаточной массы, чтобы удержать на своей орбите быстро движущиеся космические аппараты. Проблемой также являются источники энергии, обладающие достаточной ёмкостью, чтобы питать аппарат.

В общем, все эти миссии, целью которых является изучение внешних планет, очень амбициозны и поэтому заслуживают особого внимания. Look At Me рассказывает о тех, которые действуют в настоящее время.

New Horizons
(«Новые горизонты»)

Цель: изучение Плутона, его спутника Харона и пояса Койпера
Продолжительность: 2006—2026
Дальность полёта: 8,2 млрд км
Бюджет: около $650 млн

Одна из самых интересных миссий NASA нацелена на изучение Плутона и его спутника Харона. Специально для этого космическое агентство 19 января 2006 года запустило аппарат New Horizons. Автоматическая межпланетная станция в 2007 году пролетела Юпитер, сделав около него гравитационный манёвр, который позволил ускориться благодаря полю притяжения планеты. Ближайшая точка сближения аппарата с системой Плутон — Харон произойдёт 15 июля 2015 года — в этот же момент New Horizons окажется в 32 раза дальше от Земли, чем Земля от Солнца.

В 2016—2020 годах аппарат, вероятно, изучит объекты пояса Койпера — области Солнечной системы, похожей на пояс астероидов, но примерно в 20 раз шире и массивнее его. Из-за очень ограниченного запаса топлива эта часть миссии до сих пор под вопросом.

Разработка автоматической межпланетной станции New Horizons Pluto-Kuiper Belt стартовала ещё в начале 90-х, но вскоре проект оказался под угрозой закрытия из-за проблем с финансированием. Власти США отдали приоритеты миссиям к Луне и Марсу. Но из-за того что атмосфера Плутона находится под угрозой замерзания (из-за постепенного удаления от Солнца), конгресс предоставил необходимые средства.

Масса аппарата — 478 кг, включая около 80 кг топлива. Размеры — 2,2×2,7×3,2 метра

New Horizons оборудован комплексом зондирования PERSI, включающим оптические приборы для съёмки в видимом, инфракрасном и ультрафиолетовом диапазонах, анализатор космического ветра SWAP, радиоспектрометр энергичных частиц EPSSI, блок с двухметровой антенной для изучения атмосферы Плутона и «студенческий счётчик пыли» SDC для измерения концентрации пылевых частиц в поясе Койпера.

В начале июля 2013 года камера аппарата сфотографировала Плутон и его крупнейший спутник Харон с расстояния 880 млн километров. Пока фотографии нельзя назвать впечатляющими, но специалисты обещают, что 14 июля 2015 года, пролетая мимо цели на расстоянии 12500 километров, станция отснимет одно полушарие Плутона и Харона с разрешением около 1 км, а второе — с разрешением около 40 км. Также будут проведены спектральные съёмки и создана карта температур поверхности.

«Вояджер-1»

Voyager-1
Исследование Солнечной системы
и её окрестностей

«Вояджер-1» — Космический зонд NASA, запущенный 5 сентября 1977 года для изучения внешней части Солнечной системы. Вот уже 36 лет аппарат регулярно связывается с Сетью дальней космической связи NASA, удалившись на расстояние 19 млрд километров от Земли. На данный момент он является самым далёким рукотворным объектом.

Основная миссия «Вояджера-1» завершена 20 ноября 1980 года, после того как аппарат изучил систему Юпитера и систему Сатурна. Это был первый зонд, представивший подробные изображения двух планет и их спутников.

Последний год СМИ пестрили заголовками о том, что «Вояджер-1» покинул Солнечную систему. 12 сентября 2013 года NASA, наконец, официально объявило, что «Вояджер-1» пересёк гелиопаузу и вошёл в межзвёздное пространство. Как ожидается, аппарат продолжит свою миссию до 2025 года.

JUNO («Юнона»)

Цель: исследование Юпитера
Продолжительность: 2011—2017
Дальность полёта: более 1 млрд км
Бюджет: около $1,1 млрд

Автоматическая межпланетная станция НАСА Juno («Юнона») была запущена в августе 2011 года. Из-за того что ракета-носитель обладала недостаточной мощностью, чтобы вывести аппарат прямо на орбиту Юпитера, Juno пришлось сделать гравитационный манёвр вокруг Земли. То есть сначала аппарат долетел до орбиты Марса, а затем вернулся обратно к Земле, закончив её облёт лишь в середине октября этого года. Манёвр позволил аппарату набрать необходимую скорость, и в данный момент он уже находится на пути к газовому гиганту, исследовать который он начнёт 4 июля 2016 года. В первую очередь учёные надеются заполучить информацию о магнитном поле Юпитера и о его атмосфере, а также проверить гипотезу о наличии у планеты твёрдого ядра.

Как известно, Юпитер не имеет твёрдой поверхности, а под его облаками лежит слой смеси водорода и гелия толщиной около 21 тыс. км с плавным переходом от газообразной фазы к жидкой. Затем слой жидкого и металлического водорода глубиной 30—50 тыс. км. В центре него, по теории, может скрываться твёрдое ядро диаметром около 20 тыс. км

На борту Juno имеется микроволновый радиометр (MWR), фиксирующий излучения, он позволит исследовать глубокие слои атмосферы Юпитера и узнать о количестве аммиака и воды в ней. Магнитометр (FGM) и прибор для регистрации положения относительно магнитного поля планеты (ASC) — эти приборы помогут изучить магнитосферу, динамические процессы в ней, а также представить её трёхмерную структуру. Также у аппарата имеются спектрометры и прочие датчики для исследования полярных сияний на планете.

Внутреннюю структуру планируется изучить путём измерения гравитационного поля в ходе программы Gravity Science Experiment

Основная камера космического корабля JunoCam, которая позволит отснять поверхность Юпитера во время максимальных сближений с ним (на высотах 1800—4300 км от облаков) с разрешением 3—15 км на пиксель. Остальные изображения будут иметь значительно более низкое разрешение (около 232 км на пиксель).

Камера уже была успешно протестирована — она сфотографировала Землю
и Луну во время облёта аппарата. Изображения были выложены в Сеть для изучения любителями и энтузиастами. Полученные изображения также будут смонтированы вместе в ролик, который продемонстрирует вращение Луны вокруг Земли с беспрецедентной точки обзора — прямо из глубокого космоса. По словам специалистов из NASA, «это будет очень отличаться от всего, что когда-либо раньше видели обычные люди».

«Вояджер-2»

Voyager-2
Исследует внешнюю часть Солнечной системы и межзвёздного пространства

«Вояджер-2» — космический зонд, запущенный NASAА 20 августа 1977 года, который исследует внешнюю часть Солнечной системы и межзвёздного пространства в конечном итоге. Фактически аппарат был запущен до «Вояджера-1», но тот набрал скорость и в итоге обогнал его. Зонд действует в течение 36 лет, 2 месяцев и 10 дней. Космический аппарат по-прежнему получает и передаёт данные через Сети дальней космической связи.

По состоянию на конец октября 2013 года, он находится на расстоянии 15 млрд километров от Земли. Его основная миссия закончилась 31 декабря 1989 года, после того как он успешно исследовал системы Юпитера, Сатурна, Урана и Нептуна. Ожидается, что «Вояджер-2» продолжит передавать слабые радиограммы как минимум до 2025 года.

DAWN
(«Доун», «Заря» )

Цель: исследование астероида Веста и протопланеты Церера
Продолжительность: 2007—2015
Дальность полёта: 2,8 млрд км
Бюджет: более $500 млн

DAWN — автоматическая космическая станция, которая была запущена в 2007 году для изучения двух самых больших объектов в поясе астероидов — Весты и Цереры. Уже 6 лет аппарат бороздит пространства космоса очень и очень далеко от Земли — между орбитами Марса и Юпитера.

В 2009 году он провёл манёвр в гравитационном поле Марса, набрав дополнительную скорость, и уже к августу 2011 года при помощи ионных двигателей вышел на орбиту астероида Весты, где провёл 14 месяцев, сопровождая объект на его пути вокруг Солнца.

На борту DAWN установлены две чёрно-белые матрицы (1024×1024 пикселя) с двумя объективами и цветными фильтрами. Также имеется детектор нейтронов и гамма-квантов (GraND) и спектрометр видимого и инфракрасного диапазонов (VIR), анализирующий состав поверхности астероидов.

Веста — один из крупнейших астероидов в главном астероидном поясе. Среди астероидов занимает первое место по массе и второе по размеру после Паллады

Несмотря на то что аппарат имеет довольно скромное оснащение (по сравнению с вышеописанными), он отснял поверхность Весты с максимально возможным разрешением — до 23 метров на пиксель. Все эти изображения будут использованы для создания карты Весты высокого разрешения.

Одно из любопытных открытий DAWN состоит в том, что Веста имеет базальтовую кору и ядро из никеля и железа, также как Земля, Марс или Меркурий. Это значит, что в ходе формирования тела произошло разделение его неоднородного состава под влиянием гравитационных сил. То же самое происходит со всеми объектами на пути их превращения из космического камня в планету.

Dawn также подтвердил гипотезу о том, что Веста является источником метеоритов, обнаруженных на Земле и Марсе. Эти тела, по мнению учёных, образовались после древнего столкновения Весты с другим крупным космическим объектом, после чего она чуть не разлетелась на куски. Об этом событии свидетельствует глубокий след на поверхности Весты, известный как кратер Реясильвия.

Читайте также:  Для чего нужен райзеры pci e

В данный момент DAWN находится на пути к своему следующему пункту назначения — карликовой планете Церера, на орбите которой он окажется только в феврале 2015 года. Сначала аппарат приблизится на расстояние 5900 км от её поверхности, покрытой льдом, а в течение следующих 5-ти месяцев сократит его до 700 км.

Более подробное изучение двух данных «зародышей планет» позволит глубже понять процесс формирования Солнечной системы.

«Кассини-Гюйгенс»

отправлен в систему Сатурна

«Кассини-Гюйгенс» — космический аппарат, созданный nASA и Европейским космическим агентством, был отправлен в систему Сатурна. Стартовавший в 1997 году, аппарат дважды облетел Венеру (26 апреля 1998 г. и 24 июня 1999 г.), один раз — Землю (18 августа 1999 г.), один раз — Юпитер (30 декабря 2010 г.). Во время сближения с Юпитером Кассини проводил скоординированные наблюдения совместно с «Галилеем». В 2005 году аппарат спустил зонд «Гюйгенс» на спутник Сатурна — Титан. Высадка прошла успешно, и аппарат открыл странный новый мир метановых каналов и бассейнов. Станция Кассини при этом стала первым искусственным спутником Сатурна. Её миссия была расширена, и прогнозируется, что она закончится 15 сентября 2017 года, после 293 полных оборотов вокруг Сатурна.

Rosetta («Розетта»)

Цель: исследование кометы 67P/Чурюмова — Герасименко и нескольких астероидов
Продолжительность: 2004—2015
Дальность полёта: 600 млн км
Бюджет: $1,4 млрд

Rosetta — это космический аппарат, запущенный в марте 2004 года Европейским Космическим Агентством (ЕКА) для исследования кометы 67P/Чурюмова — Герасименко и понимания того, как выглядела Солнечная система до формирования планет.

Rosetta состоит из двух частей — зонда Rosetta Space Probe и спускаемого аппарата Philae («Фила»). За 9 лет, проведённых в космосе, он облетел Марс, затем вернулся, чтобы совершить манёвр вокруг Земли, и в сентябре 2008 года приблизился к астероиду Штейнс, сделав снимки 60 % его поверхности. Затем аппарат снова вернулся к Земле, облетел её, чтобы набрать дополнительную скорость, и в июле 2010 года «встретился» с астероидом Лютеция.

В июле 2011 года Rosetta был переведён в «спящий» режим, а его внутренний «будильник» установлен на 20 января 2014 года, на 10:00 по Гринвичу. После пробуждения Rosetta будет находиться на расстоянии 9 млн километров от своей конечной цели — кометы Чурюмова — Герасименко.

после приближения к комете аппарат должен отправить к ней спускаемый аппарат Philae

111. Наследники Спутника

60 самых известных непилотируемых космических аппаратов – межпланетных зондов, посадочных станций и роверов

Стенгазеты благотворительного образовательного проекта «Коротко и ясно о самом интересном» предназначены для школьников, родителей и учителей Санкт-Петербурга. Наша цель: школьникам – показать, что получение знаний может стать простым и увлекательным занятием, научить отличать достоверную информацию от мифов и домыслов, рассказать, что мы живём в очень интересное время в очень интересном мире; родителям – помочь в выборе тем для совместного обсуждения с детьми и планирования семейных культурных мероприятий; учителям – предложить яркий наглядный материал, насыщенный интересной и достоверной информацией, для оживления уроков и внеурочной деятельности.

Мы выбираем важную тему, ищем специалиста, который может её раскрыть и подготовить материал, адаптируем его текст для школьной аудитории, компонуем это всё в формате стенгазеты, печатаем тираж и отвозим в ряд организаций Петербурга (районные отделы образования, библиотеки, больницы, детские дома, и т. д.) для бесплатного распространения. Наш ресурс в интернете – сайт стенгазет к-я.рф, где наши стенгазеты представлены в двух видах: для самостоятельной распечатки на плоттере в натуральную величину и для комфортного чтения на экранах планшетов и телефонов. Есть также группа Вконтакте и ветка на сайте питерских родителей Литтлван, где мы обсуждаем выход новых газет. Отзывы и пожелания направляйте, пожалуйста, по адресу: pangea@mail.ru.

Введение

4 октября 2017 года исполняется 60 лет со дня запуска первого искусственного спутника Земли. Простейший Спутник-1, или ПС-1, стал первым рукотворным объектом, выведенным на орбиту вокруг нашей планеты. За ним последовали и другие космические аппараты. Здесь представлены 60 межпланетных зондов, посадочных станций и роверов, которые внесли самый значительный вклад в исследования Солнечной системы и дальнего космоса. Каждый из этих беспилотных аппаратов-роботов открыл новую страницу в науке и может по праву считаться наследником Спутника.

На орбите Земли

1. Спутник-1 (СССР, 04.10.1957). 4 октября 1957 года с космодрома Байконур был запущен первый искусственный спутник Земли. Корпус спутника состоял из двух полусфер диаметром 58 см, внутри находился радиопередатчик, аккумуляторы и несколько датчиков. Радиосигналы, передаваемые спутником, принимались по всему земному шару. Спутник летал 92 дня, совершив 1440 оборотов вокруг Земли. Из-за трения о верхние слои атмосферы спутник потерял скорость, вошёл в плотные слои атмосферы и сгорел. Дата запуска «Спутника-1» является началом космической эры человечества. Илл. i.huffpost.com.

2. Спутник-2 (СССР, 03.11.1957). На борту «Спутника-2» находилась собака Лайка, которая стала первым живым существом, запущенным в космос. Илл. vikka13-7 с изм.

3. Эксплорер-1 (США, 31.01.1958). Первый искусственный спутник Земли, запущенный в США. С помощью установленного на космическом аппарате счётчика Гейгера были открыты радиационные пояса вокруг Земли, впоследствии названные поясами Ван Аллена. Илл. NASA.

4. Спутник-5 (СССР, 19.08.1960). На борту космического аппарата находились собаки Белка и Стрелка, а также 40 мышей и 2 крысы. Они стали первыми живыми существами, побывавшими в космосе и вернувшимися на Землю. Илл. из fb.ru.

5. Хаббл (США, 24.04.1990). Космический телескоп, работающий на орбите высотой 500 км с 1990 года и сделавший ряд важных открытий. С момента запуска телескоп сделал более миллиона фотографий небесных объектов и передал около 50 терабайт информации. К «Хабблу» летали четыре экспедиции на космических кораблях «Спейс Шаттл», проводя ремонт, обслуживание и переоснащение телескопа. Илл. NASA/ESA.

6. Кеплер (США, 07.03.2009). Первый космический телескоп, созданный для поиска планет около других звёзд (экзопланет) транзитным методом. Проработав на орбите с 2009 по 2013 год, «Кеплер» обнаружил более 3500 кандидатов в экзопланеты, некоторые из которых по размерам сопоставимы с Землёй. Илл. İzlesene.com.

Исследование Луны

7. Луна-1 («Мечта») (СССР, 02.01.1959). Первая автоматическая межпланетная станция, достигшая второй космической скорости и ставшая искусственным спутником Солнца. Илл. RIAN_archive / Alexander Mokletsov.

8. Луна-2 (СССР, 12.09.1959). Первая в мире станция, которая достигла поверхности Луны. «Луна-2» несла на борту вымпелы с изображением герба СССР. Илл. agenciasinc.es.

9. Луна-3 (СССР, 04.10.1959). Советская межпланетная станция, впервые сфотографировавшая обратную, не видимую с Земли, сторону Луны. Илл. polymus.ru / Thngs.

10. Рейнджер-7 (США, 28.07.1964). Первый успешный аппарат серии «Рейнджер», передавший снимки лунной поверхности с близкого расстояния. Илл. NASA.

11. Луна-9 (СССР, 31.01.1966). Первый космический аппарат в истории освоения космоса, который совершил мягкую посадку на поверхность Луны и передал на Землю панорамы лунной поверхности. Илл. NASA.

12. Луна-10 (СССР, 31.03.1966). Впервые в мире межпланетная станция вышла на орбиту вокруг Луны и получила данные о её химическом составе. Илл. Pline.

13. Сервейер-1 (США, 30.05.1966). Первый американский спускаемый аппарат, совершивший мягкую посадку на Луну. Сервейер-1 передал на Землю более 11 тысяч фотоснимков лунной поверхности. Илл. NASA.

14. Сервейер-3 (США, 17.04.1967). Второй благополучно прилунившийся американский аппарат. Впервые имел на борту устройство для сбора и анализа грунта. 3 ноября 1969 года рядом с «Сервейер-3» приземлился лунный модуль корабля Аполлон-12. Астронавты Конрад и Бин достигли аппарата и сняли с него около 10 кг деталей, включая телекамеру. Эти предметы были возвращены на Землю для исследований. Илл. NASA.

15. Зонд-5 (СССР, 15.09.1968). Первый космический аппарат, облетевший вокруг Луны и вернувшийся на Землю. На борту находились черепахи, дрозофилы, бактерии и другие живые существа, а также семена. Илл. А. Г. Шлядинского.

16. Луна-16 (СССР, 12.09.1970). Первая межпланетная станция, доставившая на Землю образцы лунного грунта массой 101 грамм. Илл. Bembmv.

17. Луна-17 и Луноход-1 (СССР, 15.11.1970). Станция «Луна-17» доставила на лунную поверхность самоходный аппарат «Луноход-1». Луноход проработал на Луне одиннадцать лунных дней (10,5 земных месяцев) и проехал 10540 м. Илл. NASA.

18. Луна-21 и Луноход-2 (СССР, 08.01.1973). Луноход-2, надёжнее и совершеннее своего предшественника, был доставлен на Луну станцией «Луна-21». За четыре месяца работы прошёл 42 километра, передал на Землю 86 панорам и около 80 000 кадров телесъёмки, но его дальнейшей работе помешал перегрев аппаратуры внутри корпуса. Илл. Hayk.

19. Луна-24 (СССР, 09.08.1976). Последняя советская станция, исследовавшая Луну. Доставила на Землю 170 граммов лунного грунта, исследовав который учёные получили убедительное доказательство наличия на Луне воды. Илл. Svobodat.

Исследование Венеры

20. Маринер-2 (США, 27.08.1962). Первая автоматическая межпланетная станция, исследовавшая Венеру с пролётной траектории. На основе полученных станцией данных была подтверждена теория об экстремально горячей атмосфере планеты. Илл. NASA.

21. Венера-3 (СССР, 16.11.1965). Стала первым земным аппаратом, достигшим поверхности другой планеты. Станция «Венера-3» состояла из орбитального отсека и спускаемого аппарата. Получить данные о Венере не удалось, так как вышла из строя система управления, но было изучено межпланетное пространство. Илл. interris.it.

22. Венера-4 (СССР, 12.06.1967). Станция впервые доставила спускаемый аппарат в атмосферу Венеры, который передал данные о плотности, давления и химическом составе, пока не разрушился из-за высокого давления. Илл. laspace.ru.

Читайте также:  Полная и неполная форма условного оператора

23. Венера-7 (СССР, 17.08.1970). Мягкую посадку на поверхность Венеры впервые удалось осуществить спускаемому аппарату «Венеры-7». Информация от него поступала в течение 53 минут, в том числе — 20 минут с поверхности. По результатам измерений, проведённых на спускаемом аппарате станции «Венера-7», были рассчитаны значения давления (в 90 ±15 раз выше, чем на Земле) и температуры на поверхности Венеры (475 ±20 °C). Илл. behance.net.

24. Венера-9 (СССР, 08.06.1975). Станция «Венера-9» стала первой на орбите вокруг Венеры. Её спускаемый аппарат после мягкой посадки впервые передал панораму венерианской поверхности и провёл исследования поверхностных пород. Илл. историк.рф.

25. Венера-13 (СССР, 30.10.1981). Посадочный аппарат станции после мягкой посадки на поверхность Венеры передал панорамное изображение окружающего венерианского пейзажа и провёл исследование грунта с помощью спектрометра. Илл. latest.raycassel.com.

26. Пионер-Венера-1 (США, 20.05.1978). Аппарат провёл радиолокационное картографирование Венеры, а также обнаружил частые грозовые разряды в атмосфере планеты. Илл. NASA.

27. Магеллан (США, 04.05.1989). Аппарат впервые осуществил подробное и полномасштабное радиолокационное картографирование Венеры и исследовал её гравитационное поле. Илл. NASA.

Исследование Марса

28. Маринер-4 (США, 28.11.1964). Первый космический аппарат, сфотографировавший Марс с близкого расстояния. Илл. NASA.

29. Марс-3 (СССР, 28.05.1971). Спускаемый аппарат станции «Марс-3» совершил первую мягкую посадку на Марс. Передача данных началась через 1,5 минуты после посадки, но прекратилась через 14,5 секунд. Илл. NASA.

30. Маринер-9 (США, 30.05.1971). Аппарат «Маринер-9» стал первым искусственным спутником Марса. Он передал больше 7 тысяч снимков. Данные, полученные «Маринером-9» стали основой для планирования будущих полётов автоматических станций к Красной планете. Илл. NASA.

31. Марс-6 (СССР, 05.08.1973). Посадочный аппарат станции «Марс-6» провёл первые прямые измерения состава атмосферы, давления и температуры планеты во время снижения на парашюте. Илл. zelenyikot.livejournal.com.

32. Викинг-1 (США, 20.08.1975). Посадочный модуль станции «Викинг-1» стал первым аппаратом, совершившим успешную посадку на поверхность Марса и полностью выполнившим программу исследований. Илл. NASA.

33. Mars Pathfinder (США, 04.12.1996). Автоматическая станция «Mars Pathfinder» доставила первый работоспособный марсоход, «Соджорнер». Всего было передано 16,5 тысяч снимков камеры марсианской станции и 550 снимков камер марсохода, проведено 15 анализов пород. Илл. NASA.

34. Марсоход «Спирит» (США, 10.09.2003). «Спирит» – первый марсоход космического агентства НАСА, запущенный США в рамках проекта Mars Exploration Rover. «Спирит» проехал 7,73 км вместо запланированных 600 м, что позволило сделать более обширные анализы геологических пород Марса. Илл. NASA.

35. Марсоход «Оппортьюнити» (США, 08.07.2003). «Оппортьюнити» – второй марсоход космического агентства НАСА, запущенный США в рамках проекта Mars Exploration Rover. По состоянию на август 2017 года марсоход проехал 45 км и продолжает свою работу. Илл. NASA.

36. Феникс (США, 04.08.2007). «Феникс» стал первым аппаратом, успешно совершившим посадку в полярном регионе Марса. Главным научным результатом миссии стало обнаружение льда под тонким слоем грунта. Илл. NASA.

37. Марсоход «Кьюриосити» (США, 26.11.2011). Марсоход «Кьюриосити» – это автономная химическая лаборатория, превосходящая по размерам и массе все предыдущие марсоходы. Аппарат проводит бурения и анализ грунта. На 2017 год «Кьюриосити» преодолел более 16 км и продолжает работу. Илл. NASA/JPL-Caltech.

Исследование Меркурия

38. Маринер-10 (США, 03.11.1973). «Маринер-10» стал первым аппаратом, облетевшим Меркурий. Совершив гравитационный манёвр около Венеры, «Маринер-10» трижды сближался с Меркурием, а также впервые измерил магнитное поле и температуру планеты. Илл. NASA.

39. Мессенджер (США, 03.08.2004). Станция «Мессенджер» стала первым искусственным спутником Меркурия, проведя исследования магнитосферы планеты и сделав более 277 тысяч снимков. В 2015 году «Мессенджер» завершил миссию и упал на Меркурий. Илл. NASA.

Исследование планет-гигантов и дальнего космоса

40. Пионер-10 (США, 03.03.1972). «Пионер-10» – первая автоматическая межпланетная станция, пролетевшая вблизи Юпитера. Была уточнена масса планеты, изучена её атмосфера и крупнейшие спутники. Последний успешный приём данных от «Пионера-10» состоялся 27 апреля 2002 года. Илл. Rick Guidice / NASA.

41. Пионер-11 (США, 06.04.1973). «Пионер-11» стал первым аппаратом, совершившим пролёт около Сатурна. Проведены исследования магнитосферы планеты, а также её спутников. Последний сигнал от «Пионер-11» был получен 30 сентября 1995 года. Илл. NASA Ames.

42. Вояджер-1 (США, 05.09.1977). Космический аппарат «Вояджер-1» – самый удалённый от нас и самый быстрый рукотворный объект. Его скорость составляет 17 км/с. Сейчас он находится на расстоянии 21 миллиард километров от Земли. «Вояджер-1» исследовал с пролётной траектории Юпитер и Сатурн. Часть научных приборов продолжает работать до сих пор. Илл. NASA.

43. Вояджер-2 (США, 20.08.1977). «Вояджер-2» – первый и на сегодняшний день единственный космический аппарат, пролетевший мимо всех планет-гигантов. Ему принадлежит открытие колец у Урана и Нептуна. «Вояджер-2», как и «Вояджер-1», продолжает передавать данные. Илл. NASA/JPL.

44. Галилео (США, 18.10.1989). Автоматическая станция «Галилео» исследовала Юпитер и его спутники. Впервые в атмосферу планеты-гиганта был сброшен зонд. В поясе астероидов «Галилео» открыл спутник у астероида Ида. Илл. NASA.

45. Кассини-Гюйгенс (США и ЕС, 15.10.1997). Космический аппарат «Кассини» стал первым искусственным спутником Сатурна. Посадочный зонд «Гюйгенс» впервые совершил мягкую посадку на спутник Сатурна Титан. Полученные данные дали возможность предположить, что на Титане возможна жизнь. Чтобы не заразить спутники земной жизнью, в сентябре 2017 года аппарат «Кассини», истративший всё своё топливо, был разрушен в атмосфере Сатурна. Илл. NASA/JPL-Caltech.

46. Новые Горизонты (США, 19.01.2006). Автоматическая станция «Новые Горизонты» впервые изучила карликовую планету Плутон и её спутники. Миссия аппарата не закончена, и в 2019 году ожидается пролёт мимо другого карликового объекта в поясе Койпера. Илл. NASA.

Исследование малых тел

47. Международный исследователь комет (США и ЕС, 12.08.1978). Этот космический аппарат после запуска исследовал солнечный ветер и магнитосферу Земли, а потом был направлен к комете Джакобини – Циннера и комете Галлея, и стал первым космическим кораблем, пролетевшим сквозь хвост кометы. Илл. NASA.

48. Вега-1 (СССР, 15.12.1984). Автоматическая станция «Вега-1» сбросила в атмосферу Венеры атмосферный аэростатический зонд, после чего сблизилась с кометой Галлея и передала около 70 изображений её ядра, а также характеристики пыли в хвосте кометы. Илл. Daderot.

49. Джотто (ЕС, 02.07.1985). Космический аппарат «Джотто» исследовал комету Галлея, пройдя на рекордном от неё расстоянии, в результате чего получил повреждения от частиц кометы. Позже «Джотто» исследовал комету Григга – Скьеллерупа. Илл. Andrzej Mirecki.

50. NEAR Shoemaker (США, 17.02.1996). «Near Earth Asteroid Rendezvous Shoemaker» исследовал астероид Эрос. Аппарат стал первым искусственным спутником астероида и первым искусственным объектом, совершившим мягкую посадку на астероид. Илл. NASA.

51. Розетта и Филы (ЕС, 02.03.2004). Окончание миссии: 30.09.2016. Автоматическая станция «Розетта» впервые вышла на орбиту кометы Чурюмова — Герасименко и исследовала её. Спускаемый зонд «Филы» совершил первую в истории посадку на комету. Илл. European Space Agency.

52. Стардаст (США, 07.02.1999). Космический аппарат «Стардаст» исследовал комету Вильда и впервые доставил на Землю образцы вещества хвоста кометы. Илл. NASA/JPL.

53. Хаябуса (Япония, 09.05.2003). Космический аппарат «Хаябуса» сблизился с астероидом Итокава, взял образцы грунта и через несколько лет вернул их на Землю. Илл. Jgarry.

54. Дип Импакт (США, 12.01.2005). При исследовании кометы Темпеля 1 автоматическая станция «Дип Импакт» сбросила на неё ударный зонд и исследовала выброшенное при столкновении вещество. Таким образом, были полученные данные о химическом составе кометы. Илл. NASA/JPL.

55. Dawn (США, 27.09.2007). Автоматическая станция «Dawn» изучала астероид Веста и карликовую планету Церера, находясь на их орбитах. Илл. NASA.

Исследование Солнца и межпланетного пространства

56. Пионер-5 (США, 11.03.1960). Благодаря переданным «Пионером-5» данным было впервые установлено существование межпланетных магнитных полей. Илл. NASA.

57. Гелиос-B (ЕС и США, 15.01.1976). Аппарат «Гелиос-В» достиг рекордного сближения с Солнцем (43 миллиона км). Илл. 3.bp.blogspot.com.

58. Улисс (США и ЕС, 06.10.1990). Космический аппарат «Улисс» является первым аппаратом, изучающим Солнце со стороны полюсов. Это позволило построить более точную модель околосолнечного пространства. Илл. G.Erickson/NASA/ESA.

59. Genesis (США, 08.08. 2001). Космический аппарат «Genesis», собрав образцы солнечного ветра, впервые в истории доставил их на Землю. Илл. NASA/JPL.

60. STEREO (США, 26.10.2006). Два одинаковых спутника «STEREO» исследуют Солнце из двух разных точек, используя стереоскопический эффект, что позволяет лучше изучать солнечную активность и предсказывать «космическую погоду». Илл. NASA.

Космические перспективы

Космос огромен. Ошеломляюще огромен. Чтобы понять, кто мы такие и в каком мире живём, чтобы ответить хотя бы на часть вопросов о человеке и Вселенной, нужно продолжать дело, начатое Первым Спутником. Учёные и инженеры разных стран готовят к запуску множество потрясающих космических аппаратов, которые отправятся в разные уголки Солнечной системы и добудут для нас важные сведения. Когда же стартуют следующие межпланетные станции и роверы, способные по важности исследований сравниться с «Венерами» и «Вояджерами»?

В сентябре 2016 года состоялся запуск аппарата «OSIRIS-REx», который прямо сейчас летит в космосе навстречу астероиду Бенну, чтобы забрать с него образцы грунта в 2019 году и вернуться на Землю в 2023 году.

Китай планирует в 2018 году запустить к Луне аппарат «Чанъэ-5», который доставит на Землю образцы лунного грунта весом до 2 кг. В этом же году аппарат «Чанъэ-4» совершит первую мягкую посадку на обратной, не видимой с Земли, стороне Луны.

Россия в 2018 г. запустит на орбиту астрофизическую обсерваторию «Спектр-РГ», предназначенную для изучения Вселенной в гамма- и рентгеновском жёстком диапазоне.

Читайте также:  Почему вылетает мта на виндовс 10

На 2019 год назначен запуск «Космического телескопа имени Джеймса Уэбба». Он придёт на смену легендарному телескопу «Хаббл».

После 2020 года нас ждёт целая серия многообещающих миссий: космический аппарат Европейского космического агентства «Эвклид», который будет исследовать красное смещение галактик, тёмную материю и энергию; совместная российско-европейская миссия «ЭкзоМарс» с марсоходом «Pasteur analytical laboratory»; российский космический телескоп «Спектр-УФ» для наблюдений в ультрафиолетовом участке электромагнитного спектра. Евросоюз запустит к спутникам Юпитера аппарат «Jupiter Icy Moon Explorer», а США – аппарат «Europa Clipper», чтобы проверить гипотезу о существовании жизни на некоторых из них. Также Роскосмос готовит два запуска: это «Луна-25» и «Венера-Д», чтобы продолжить исследования, начатые в СССР.

Таким образом, у нас большие планы по исследованию Солнечной системы и дальних уголков космоса. Будущее за наукой. Присоединяйтесь!

Выпуск подготовили: автор текста – Роман Рогов и научный редактор – конструктор ЦНИИ РТК, популяризатор космонавтики Александр Хохлов (Северо-Западная межрегиональная общественная организация Федерации космонавтики России). СЗО ФКР в течение 20 лет работает в области популяризации космонавтики, организует выставки по космической тематике, ведёт просветительскую работу со школьниками, студентами и широкой аудиторией, организует встречи с космонавтами и сотрудниками космической отрасли.

Спасибо, друзья, за внимание к нашей публикации. Мы были бы вам очень признательны за оставленный отзыв. Напоминаем, что наши партнёры в своих организациях бесплатно раздают наши стенгазеты.

Ваш Георгий Попов, редактор к-я.рф

По способу управления космические аппараты подразделяются на автоматические, пилотируемые (обитаемые) и комбинированные (посещаемые). Последние 2 типа называют также космическими кораблями (КК) или космическими станциями (КС). Автоматический космический аппарат имеет комплекс бортового оборудования, не требующего экипажа на борту и обеспечивающего выполнение заданной автономной программы. Пилотируемый космический аппарат предназначается для выполнения задач при участии человека (экипажа). Комбинированный космический аппарат — разновидность автоматического, конструкция которого предусматривает в процессе функционирования периодическое посещение его космонавтами для проведения научных, ремонтных, проверочных, специальных и других работ.

Научно-исследовательские космические аппараты ввиду широкого круга решаемых вопросов разнообразны по массе, размерам, конструкции, типу используемых орбит, характеру оборудования и приборного оснащения. Масса их колеблется от нескольких килограмм до 10 тонн и более, высота орбит — от 150 до 400 000 километров.

Специализированные космические аппараты народно-хозяйственного (коммерческого) назначения служат для метеорологических наблюдений, связи и исследования природных ресурсов.

Метеорологические космические аппараты используются для получения в глобальном масштабе информации, с помощью которой составляются надёжные долгосрочные прогнозы.

Связные космические аппараты осуществляют ретрансляцию радиосигналов земных станций, расположенных за пределами прямой видимости.

Космические аппараты для исследования природных ресурсов Земли позволяют получать информацию о природных условиях материков и океанов, флоре и фауне Земли, результатах деятельности человека Информация используется в интересах решения задач лесного и сельского хозяйства, геологии, гидрологии, геодезии, картографии, океанологии и т.п.

Многоцелевые космические аппараты военного назначения служат для раннего предупреждения о ракетном нападении, обнаружения ядерных взрывов и решения других задач.

7. Микроэлектроника в космосе

Состав космического аппарата

Воздействие космической радиации на бортовую аппаратуру КА

Отказы и сбои в работе бортового электронного оборудования КА, обусловленные радиационным воздействием, делятся на две группы: отказы, вызываемые постепенным ухудшением характе- ристик элементов микроэлектроники в результате накопления радиационных дефектов, и внезапные сбои и отказы, связанные с воздействием отдельных ядерных частиц. Первая разновидность отказов свойственна аналоговым бипо- лярным интегральным схемам (ИС). В качестве критериев ухуд- шения параметров таких ИС можно использовать рассмотренные выше применительно к ФЭП коэффициенты, которые характери- зуют зависимость времени жизни и диффузионной длины неосновных носителей заряда от флюенса воздействующих частиц. Ухудшение характеристик полупроводниковых материалов, из которых изготовлены ИС, приводит к деградации эксплуатаци- онных параметров ИС, например, к снижению коэффициента пе- редачи тока (коэффициента усиления).

Интересной особенностью радиационного воздействия на аналоговые биполярные ИС является обнаруженный в начале 1990-х гг. «эффект низкой интенсивности излучения», заклю- чающийся в усилении деградации параметров микросхемы по мере снижения интенсивности облучения при условии сохране- ния неизменной суммарной поглощенной дозы. Возникновение этого эффекта связано с процессами в толстых оксидных слоях, имеющихся в биполярных ИС.

Отказы и сбои приборов КА

Интересной особенностью радиационного воздействия на аналоговые биполярные ИС является обнаруженный в начале 1990-х гг. «эффект низкой интенсивности излучения», заклю- чающийся в усилении деградации параметров микросхемы по мере снижения интенсивности облучения при условии сохране- ния неизменной суммарной поглощенной дозы. Возникновение этого эффекта связано с процессами в толстых оксидных слоях, имеющихся в биполярных ИС. Современные цифровые ИС строятся на основе структур ме- талл–окисел-полупроводник (МОП), функционирующих на ос- новных носителях заряда, вследствие чего радиационные де- фекты оказывают на них малое влияние. Однако для таких ИС весьма критичными являются эффекты, вызываемые отдельными заряженными частицами ГКЛ, СКЛ или РПЗ.

Существует несколько видов подобных эффектов, но наиболее часто возни- кают обратимые одиночные сбои.

Эффекты РПЗ на КА

Основными источниками радиационной опасности на КА являются три наиболее мощных и достаточно хорошо изученных радиационных поля, которые отличаются своим происхождением и состоят из потоков частиц с отличными энергетическими спектрами.
Другие известные радиационные поля (ионы аномального компонента космических лучей, ионы захваченной радиации, электроны и протоны альбедо на низких высотах), состоят из более слабых потоков частиц и еще недостаточно изучены. Основная часть этих потоков состоит из частиц с энергией менее нескольких МэВ и поэтому их вклад в радиационную опасность на КА в основном должен быть связан с поверхностными эффектами.

В межпланетном пространстве существуют:

· галактические космические лучи (ГКЛ), в состав которых входят протоны и ядра химических элементов;

· солнечные космические лучи (СКЛ), в состав которых входят протоны и ионы химических элементов.

В околоземном космическом пространстве существуют:

· радиационные пояса Земли (РПЗ), которые в основном состоят из электронов и протонов, захваченных магнитным полем Земли.

Межпланетные миссии. Электронная бортовая аппаратура межпланетных КА

Список межпланетных космических аппаратов — список космических аппаратов, которые использовались для исследования планет, комет и астероидов Солнечной системы. В списке приведены все межпланетные аппараты, запущенные в период с 1958 по 2011 год, а также государства и космические агентства, участвовавшие в запусках и исследованиях. Также приведены планируемые миссии, уже утверждённые национальными космическими агентствами. Данные представлены в хронологическом порядке, отдельно выделены удачные, неудачные, текущие и планируемые запуски.

Всего на март 2016 года было запущено 226 аппаратов [1] (включая пролётные миссии):

к Луне — 97 АМС + 9 пилотируемых кораблей

к астероидам и кометам — 24

Геостационарные спутники

Геостационарный искусственный спутник Земли представляет собой аппарат, который двигается вокруг планеты в восточном направлении, по круговой экваториальной орбите с периодом обращения, равным периоду собственного вращения Земли. Если смотреть на такой спутник с Земли, то наблюдателю покажется, что он не движется, а стоит на одном месте. Высота его орбиты равна 36 000 километров от поверхности планеты. Именно с такой высоты видна почти половина поверхности Земли — openaxiom.ru. Поэтому, расположив равномерно вдоль экваториальной орбиты на равном расстоянии (через 120°) три одинаковых спутника, можно обеспечить непрерывное наблюдение за поверхностью планеты в диапазоне широт, равном плюс-минус 70°, и глобальную круглосуточную радио- и телевизионную связь.

Если бы геостационарные спутники были видны на небе невооружённым глазом, то линия, на которой они были бы видны, совпадала бы с «поясом Кларка» для данной местности.

Для перевода спутников с низковысотной орбиты на геостационарную используются переходные геостационарные (геопереходные) орбиты (ГПО) — эллиптические орбиты с перигеем на низкой высоте и апогеем на высоте, близкой к геостационарной орбите.

После завершения активной эксплуатации на остатках топлива спутник должен быть переведён на орбиту захоронения, расположенную на 200—300 км выше ГСО.

Спутник, обращающийся на геостационарной орбите, находится под воздействием ряда сил (возмущений), изменяющих параметры этой орбиты. В частности, к таким возмущениям относятся гравитационные лунно-солнечные возмущения, влияние неоднородности гравитационного поля Земли, эллиптичность экватора и т. д.

Космическая радиация. Типы

Радиация (часто также используется термин «ионизирующее излучение») — потоки элементарных частиц, ядер и электромагнитных квантов в широком диапазоне энергий [2] , взаимодействие которых с веществом вызывает ионизацию его атомов и молекул, разрушение атомной и молекулярной структуры вещества. Радиация приводит к негативным последствиям как в различных технических устройствах, так и в биологических объектах. Основные практически важные источники космической радиации — это галактические космические лучи (энергетический спектр до 10 19 эВ/нуклон), солнечные космические лучи (в диапазоне энергий до 1000 МэВ), электроны (до 10 МэВ) и ионы (до 400 МэВ) радиационных поясов Земли, а также солнечные кванты рентгеновского и гамма излучений. Наиболее радиационно-опасными являются частицы с энергиями более 30-50 МэВ. Для большинства типов космической радиации основным механизмом передачи энергии веществу являются ионизационные потери, то есть вырывание электрона с внешней оболочки атома за счёт передачи ему части энергии налетающей частицы или генерация электронно-дырочных пар в веществе. Кроме этого для частиц с энергией, превышающей несколько 100 МэВ/нуклон, возможны ядерные реакции, порождающие значительное вторичное излучение (нейтроны, мезоны, гамма-кванты и фрагменты ядер), которое также следует учитывать при анализе радиационной обстановки.

Дата добавления: 2018-02-28 ; просмотров: 659 ; ЗАКАЗАТЬ РАБОТУ

Ссылка на основную публикацию
Adblock detector