Таблицы сложения и умножения в двоичной системе

Таблицы сложения и умножения в двоичной системе

Особая значимость двоичной системы счисления в информатике определяется тем, что внутреннее представление любой информации в компьютере является двоичным, т.е. описываемым наборами только из двух знаков (0 и 1).

Конкретизируем описанный выше способ в случае перевода чисел из десятичной системы в двоичную. Целая и дробная части переводятся порознь. Для перевода целой части (или просто целого) числа необходимо разделить ее на основание системы счисления и продолжать делить частные от деления до тех пор, пока частное не станет равным 0. Значения получившихся остатков, взятые в обратной последовательности, образуют искомое двоичное число. Например:

Для перевода дробной части (или числа, у которого «0» целых) надо умножить ее на 2. Целая часть произведения будет первой цифрой числа в двоичной системе. Затем, отбрасывая у результата целую часть, вновь умножаем на 2 и т.д. Заметим, что конечная десятичная дробь при этом вполне может стать бесконечной <периодической) двоичной. Например:

0,73 • 2 = 1,46 (целая часть 1),

0,46 • 2 = 0,92 (целая часть 0 ),

0,92 • 2 = 1,84 (целая часть 1),

0,84 • 2 = 1,68 (целая часть 1) и т.д.

Над числами, записанными в любой системе счисления, можно; производить различные арифметические операции. Так, для сложения и умножения двоичных чисел необходимо использовать табл. 1.5.

Таблица 1.5. Таблицы сложения и умножения в двоичной системе

Заметим, что при двоичном сложении 1 + 1 возникает перенос единицы в старший разряд — точь-в-точь как в десятичной арифметике:

3.3. ВОСЬМЕРИЧНАЯ И ШЕСТНАДЦАТИРИЧНАЯ
СИСТЕМЫ СЧИСЛЕНИЯ

С точки зрения изучения принципов представления и обработки информации в компьютере, обсуждаемые в этом пункте системы представляют большой интерес.

Хотя компьютер «знает» только двоичную систему счисления, часто с целью уменьшения количества записываемых на бумаге или вводимых с клавиатуры компьютера знаков бывает удобнее пользоваться восьмеричными или шестнадцатиричными числами, тем более что, как будет показано далее, процедура взаимного перевода чисел из каждой из этих систем в двоичную очень проста — гораздо проще переводов между любой из этих трех систем и десятичной.

Перевод чисел из десятичной системы счисления в восьмеричную производится (по аналогии с двоичной системой счисления) с помощью делений и умножений на 8. Например, переведем число 58,32(10):

58 : 8 = 7 (2 в остатке),

7 : 8 = 0 (7 в остатке).

(из конечной дроби в одной системе может получиться бесконечная дробь в другой).

Перевод чисел из десятичной системы счисления в шестнадцатеричную производится аналогично.

Читайте также:  Таблетка от жадности трейдинг

С практической точки зрения представляет интерес процедура взаимного преобразования двоичных, восьмеричных и шестнадцатиричных чисел. Для этого воспользуемся табл. 1.6 чисел от 0 до 15 (в десятичной системе счисления), представленных в других системах счисления.

Для перевода целого двоичного числа в восьмеричное необходимо разбить его справа налево на группы по 3 цифры (самая левая группа может содержать менее трех двоичных цифр), а затем каждой группе поставить в соответствие ее восьмеричный эквивалент. Например:

11011001= 11011001, т.е. 11011001(2) =331(8).

Заметим, что группу из трех двоичных цифр часто называют «двоичной триадой».

Перевод целого двоичного числа в шестнадцатиричное производится путем разбиения данного числа на группы по 4 цифры — «двоичные тетрады»:

1100011011001 = 1 1000 1101 1001, т.е. 1100011011001(2)= 18D9(16).

Для перевода дробных частей двоичных чисел в восьмеричную или шестнадцатиричную системы аналогичное разбиение на триады или тетрады производится от точки вправо (с дополнением недостающих последних цифр нулями):

0,1100011101(2) =0,110 001 110 100 = 0,6164(8),

0,1100011101(2) = 0,1100 0111 0100 = 0,C74(16).

Перевод восьмеричных (шестнадцатиричных) чисел в двоичные производится обратным путем — сопоставлением каждому знаку числа соответствующей тройки (четверки) двоичных цифр.

Таблица 1.6 Соответствие чисел в различных системах счисления

Десятичная Шестнадцатиричная Восьмеричная Двоичная
А
В L011
С
D
E
F

Преобразования чисел из двоичной в восьмеричную и шестнадцатиричную системы и наоборот столь просты (по сравнению с операциями между этими тремя системами и привычной нам десятичной) потому, что числа 8 и 16 являются целыми степенями числа 2. Этой простотой и объясняется популярность восьмеричной и шестнадцатиричной систем в вычислительной технике и программировании.

Арифметические действия с числами в восьмеричной и шестнадцатиричной системах счисления выполняются по аналогии с двоичной и десятичной системами. Для этого необходимо воспользоваться соответствующими таблицами. Для примера табл. 1.7 иллюстрирует сложение и умножение восьмеричных чисел.

Рассмотрим еще один возможный способ перевода чисел из одной позиционной системы счисления в другую — метод вычитания степеней. В этом случае из числа последовательно вычитается максимально допустимая степень требуемого основания, умноженная на максимально возможный коэффициент, меньший основания; этот коэффициент и является значащей цифрой числа в новой системе. Например, число 114(10):

114 — 2 6 = 114 – 64 = 50,

50 2 5 = 50 – 32 = 18,

114 – 1 ∙ 8 2 = 114 – 64 = 50,

50 – 6 ∙ 8 1 = 50 – 48 = 2,

2 – 2 ∙ 8° = 2 – 2 = 0.

Читайте также:  Как перейти на тариф вся россия мегафон

Таблица 1.7 Таблицы сложения и умножения в восьмеричной системе

Контрольные вопросы

1. В чем отличие позиционной системы счисления от непозиционной?

2. Каковы способы перевода чисел из одной системы счисления в другую?

3. В чем заключается преимущество использования восьмеричной и шестнадцатиричной систем счисления в вычислительной технике?

4. Как выглядят таблицы сложения и умножения в шестнадцатиричной системе?

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9526 — | 7348 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Этот калькулятор умеет осуществлять простейшие арифметические операции над числами. Причем числа могут быть введены в разных системах счисления.

Вам необходимо определиться сколько чисел вам необходимо посчитать и выбрать это количество в графе количество чисел.

Далее Вам необходимо ввести каждое число и выбрать его систему счисления. Если в указанном списке Вы не нашли нужной СС, то выберите пункт другая и введите числом основание вашей системы счисления.

После ввода всех чисел и выбора арифметических операций нажмите кнопку рассчитать.

Поставить LIKE и поделиться ссылкой
  • Калькулятор
  • Инструкция
  • Теория
  • История
  • Сообщить о проблеме

Дата и время данного расчета 09.10.2018 7:11 МСК
Умножение 101001*10111 в двоичной

Мы определили что два или более чисел находятся в разных системах счисления.
Для правильного выполнения всех арифметических операций необходимо
перевести все числа в какую-нибудь одну систему счисления.

Вы выбрали десятичную систему счисления поэтому в нее осуществим перевод всех чисел.

1) Переведем число 1010012
Для этого переведем его сначала в десятичную вот так:

1010012 = 1∙2 5 +0∙2 4 +1∙2 3 +0∙2 2 +0∙2 1 +1∙2 0 = 32+0+8+0+0+1 = 4110

Целая часть находится делением на основание новой:

41 10
-40 4
1

2) Число 1011110 уже находится в нужной СС.

В результате преобразований получили выражение:

В полученном выражении все числа находятся в десятичной системе счисления. Поэтому все расчеты будем выполнять в ней.

x 4 1
1 1 1 1
+ 4 1
4 1
4 1
4 1
4 1 4 5 5 1

Получилось: 4110*1011110 = 41455110

Постоянная ссылка на результат этого расчета

Вы можете отблагодарить нас:

Этот калькулятор умеет осуществлять простейшие арифметические операции над числами. Причем числа могут быть введены в разных системах счисления.

Читайте также:  Чем можно подклеить отошедшие обои

Пример решения: 5436 7 — 1101 2
Пример состоит из двух чисел 5436 7 и 1101 2 где в первом 7 и втором 2 — это основания системы счисления.

Введем сначала 5436 7 в поле "число 1" без основания СС (то есть без 7) и укажем его систему в соответствующем поле — выбираем пункт другая и вводим 7. Результат на скришоте:

Теперь также введем число 11011 в двоичной системе счисления:

Далее выбираем в поле "операция" вычитание и указываем что расчет должен быть выполнен в десятичной СС. Если мы хотим чтобы результат расчета был в двоичной СС, то указываем это как на скриншоте:

Теперь нажимаем копку "Рассчитать" и смотрим результат:

Если хотите посмотреть ход решения, то нажмите ссылку "Показать как оно получилось"

Если Вам необходимо рассчитать более двух чисел то выберите нужное количество в пункте "Количество чисел" Максимум 7 чисел.
При расчете сначала выполняются операции деления и умножения затем сложения и вычитания.

Вы можете выполнять операции расчета деления столбиком.

Арифметические действия в двоичной системе производятся по обычным для позиционных систем правилам, которые нам известны из десятичной арифметики, но при этом используются таблицы сложения и умножения двоичной системы:

Таблица сложения в двоичной системе очень проста. Надо только помнить, что прибавление нуля не меняет число, а один плюс один, будет два.

Таблица умножения ещё проще. Здесь нужно твёрдо знать, что любое число, умноженное на нуль, есть нуль и что умножение на единицу не меняет числа.

Сложение многозначных чисел производится точно так же, как и в десятичной системе, то есть поразрядно, начиная с младшего. Например:

Вычитание в двоичной системе выполняется по таким правилам:

Точки, поставленные над некоторыми разрядами уменьшаемого, показывают, что в двоичной системе единица помеченного разряда раздробляется на две единицы низшего разряда.

Умножение и деление двоичных чисел практически не отличается от умножения и деления чисел, записанных в десятичной системе счисления. Единственным отличием является то, что при умножении в столбик не приходится находить произведение первого множителя на значения последовательных разрядов второго множителя, так как значение этих разрядов 1 или 0. А при делении в столбик не нужно подбирать неполное делимое, так как учитывая специфику двоичных чисел, неполное делимое можно определить просто посмотрев на делимое.

Примеры: 1101111 · 101101 = ?, 111100 : 1010 = ?

Ссылка на основную публикацию
Adblock detector