Wolfram alpha определенный интеграл

Wolfram|Alpha — база знаний и набор вычислительных алгоритмов (англ. computational knowledge engine ), вопросно-ответная система. Запущена 15 мая 2009 года. Не является поисковой системой.

Содержание

Основные операции [ править ]

  • Сложение a + b <displaystyle a+b>: a+b
  • Вычитание a − b <displaystyle a-b>: a-b
  • Умножение a ⋅ b <displaystyle acdot b>: a*b
  • Деление a b <displaystyle <frac >>: a/b
  • Возведение в степень a b <displaystyle <^>>: a^b

Примеры

  • 314+278; 314—278; 314*278; 314^278;
  • (a^2+b^2)+(a^2-b^2); (a^2+b^2)/(a^2-b^2); (a+b)^(2+2/3).

Знаки сравнения [ править ]

  • Меньше <displaystyle : >"> ><displaystyle >>>"/> : >
  • Равно = <displaystyle =>: = или ==

Логические символы [ править ]

  • Конъюнкция "И" ∧ <displaystyle wedge >: &&
  • Дизъюнкция "ИЛИ" ∨ <displaystyle vee >: ||
  • Отрицание "НЕ" ¬ <displaystyle
    eg >: !
  • Импликация =>

Основные константы [ править ]

  • Число π <displaystyle pi >: Pi
  • Число e <displaystyle e>: E
  • Бесконечность ∞ <displaystyle infty >: Infinity, inf или oo

Основные функции [ править ]

( a = const ) <displaystyle left(a=operatorname
ight)>

Решение уравнений [ править ]

Чтобы получить решение уравнения вида f ( x ) = 0 <displaystyle f(x)=0> достаточно записать в строке Wolfram|Alpha: f[x]=0, при этом Вы получите некоторую дополнительную информацию, которая генерируется автоматически. Если же Вам необходимо только решение, то необходимо ввести: Solve[f[x]=0, x].

Примеры

  • Solve [Cos[x]+Cos[2x]+Sin[4x]=0,x]или Cos[x]+Cos[2x]+Sin[4x]=0;
  • Solve[x^5+x^4+x+1=0,x] или x^5+x^4+x+1=0;
  • Solve[Log[3,x²+x+1]-Log[9,x²]=0,x] или Log[3,x²+x+1]-Log[9,x²]=0.

Если Ваше уравнение содержит несколько переменных, то запись: f[x, y,…,z]=0 даст весьма разнообразный набор сведений, таких как решение в целых числах, частные производные функции f <displaystyle f> и т. д. Чтобы получить решение уравнения вида f ( x , y , . . . , z ) = 0 <displaystyle f(x,y. z)=0> по какой-либо одной из переменных, нужно написать в строке: Solve[f[x, y, …, z]=0, j], где j <displaystyle j> — интересующая Вас переменная.

Примеры

  • Cos[x+y]=0 или Solve[Cos[x+y]=0,x] или Solve[Cos[x+y]=0,y];
  • x²+y²-5=0 или Solve[x²+y²-5=0,x] или Solve[x²+y²-5=0,y];
  • x+y+z+t+p+q=9.

Решение неравенств [ править ]

Решение в Wolfram Alpha неравенств типа 0>"> f ( x ) > 0 <displaystyle f(x)>0> 0>"/> , f ( x ) ⩾ 0 <displaystyle fleft(x
ight)geqslant 0> полностью аналогично решению уравнения f ( x ) = 0 <displaystyle f(x)=0> . Нужно написать в строке WolframAlpha: f[x]>0 или f[x]>=0 или Solve[f[x]>0, x] или Solve[f[x]>=0,x].

Читайте также:  Multicast rate что это

Примеры

  • Cos[10x]-1/2>0 или Solve[Cos[10x]-1/2>0,x];
  • x^2+5x+10>=0 или Solve[x^2+5x+10>=0,x].

Если Ваше неравенство содержит несколько переменных, то запись: f[x, y,…,z]>0 или f[x, y,…,z]>=0 даст весьма разнообразный набор сведений, как и в случае соответствующих уравнений. Чтобы получить решение такого неравенства по какой-либо одной из переменных нужно написать в строке: Solve[f[x, y,…,z]>0,j] или Solve[f[x, y,…,z]>=0,j], где j <displaystyle j> — интересующая Вас переменная.

Примеры

  • Cos[x+y]>0 или Solve[Cos[x+y]>0,x] или Solve[Cos[x+y]>0,y];
  • x^2+y^3-5 =9.

Решение различных систем неравенств и уравнений [ править ]

Решение систем различного вида в Wolfram Alpha крайне просто. Достаточно набрать уравнения и неравенства Вашей системы, точно так, как это описано выше в пунктах 7. и 8., соединяя их союзом «И», который в Wolfram Alpha имеет вид &&.

Сервис Wolfram Alpha поддерживает возможность построения графиков функций как вида f ( x ) <displaystyle f(x)> , так и вида f ( x , y ) <displaystyle f(x,y)> . Для того, чтобы построить график функции f ( x ) <displaystyle f(x)> на отрезке x ∈ [ a , b ] <displaystyle xin left[
ight]> нужно написать в строке Wolfram Alpha: Plot[f[x],]. Если Вы хотите, чтобы диапазон изменения ординаты y <displaystyle y> был конкретным, например y ∈ [ c , d ] <displaystyle yin left[
ight]> , нужно ввести: Plot[f[x],,].

Если Вам требуется построить сразу несколько графиков на одном рисунке, то перечислите их, используя союз «И»:Plot[f[x]&&g[x]&&h[x]&&…&&t[x],].

Для того, чтобы построить график функции f ( x , y ) <displaystyle f(x,y)> на прямоугольнике x ∈ [ a , b ] , y ∈ [ c , d ] <displaystyle xin left[
ight],yin left[
ight]> , нужно написать в строке Wolfram Alpha: Plot[f[x, y],,]. К сожалению, диапазон изменения аппликаты z <displaystyle z> пока что нельзя сделать конкретным. Тем не менее, интересно отметить, что при построении графика функции f ( x , y ) <displaystyle f(x,y)> Вы получите не только поверхность, которую она определяет, но и «контурную карту» поверхности (линии уровня).

Математический анализ [ править ]

Wolfram Alpha способен находить пределы функций, последовательностей, различные производные, определенные и неопределенные интегралы, решать дифференциальные уравнения и их системы и многое многое другое.

Пределы [ править ]

Для того, чтобы найти предел последовательности < x n ><displaystyle left<>
ight>> нужно написать в строке Wolfram Alpha: Limit[x_n, n -> Infinity].

Читайте также:  Два мира 2 моды

Примеры

  • Limit[n^3/(n^4 + 2*n), n -> Infinity];
  • Limit[(1+1/n)^n, n -> Infinity].

Найти предел функции f ( x ) <displaystyle f(x)> при x → a <displaystyle x o a> можно совершенно аналогично: Limit[f[x], x -> a].

Производные [ править ]

Для того, чтобы найти производную функции f ( x ) <displaystyle f(x)> нужно написать в строке WolframAlpha: D[f[x], x]. Если Вам требуется найти производную n-го порядка, то следует написать: D[f[x], ]. В том случае, если Вам требуется найти частную производную функции f ( x , y , z , . . . , t ) <displaystyle f(x,y,z. t)> напишите в окне гаджета: D[f[x, y, z,…,t], j], где j <displaystyle j> — интересующая Вас переменная. Если нужно найти частную производную по некоторой переменной порядка n, то следует ввести: D[f[x, y, z,…,t], ], где j <displaystyle j> означает то же, что и Выше.

Важно подчеркнуть, что Wolfram Alpha выдает пошаговое нахождение производной при нажатии на «Show Steps» в правом верхнем углу выдаваемого ей ответа.

Интегралы [ править ]

Для того, чтобы найти неопределенный интеграл от функции f ( x ) <displaystyle f(x)> нужно написать в строке WolframAlpha: Integrate f[x], x. Найти определенный интеграл ∫ a b f ( x ) d x <displaystyle int limits _^> так же просто: Integrate[f[x], ] либо Integrate f(x), x=a..b.

Важно подчеркнуть, что Wolfram Alpha выдает пошаговое нахождение интеграла при нажатии на «Show Steps» в правом верхнем углу выдаваемого ей ответа.

Дифференциальные уравнения и их системы [ править ]

Чтобы найти общее решение дифференциального уравнения F ( x , y , y ′ , y ″ , . . . , y ( n ) ) = 0 <displaystyle F(x,y,y’,y». y^<(n)>)=0> нужно написать в строке WolframAlpha: F[x, y, y’,y»,…] (при k-й производной y ставится k штрихов).

Если Вам требуется решить задачу Коши, то впишите: F[x, y, y’,y»,…], y[s]==A,y'[s]==B, …. Если нужно получить решение краевой задачи, что краевые условия, так же перечисляются через запятую, причем они должны иметь вид y[s]==S.

Решение систем дифференциальных уравнений также просто, достаточно вписать: , где f_1, f_2, …, f_n — дифференциальные уравнения, входящие в систему. К сожалению, решение задач Коши и краевых задач для систем дифференциальных уравнений пока что не поддерживается.

Ошибки при работе с системой [ править ]

Система может допускать некоторые ошибки при решении сложных задач [1] . К примеру, если попытаться решить неравенство 3 x 2 − 18 x + 24 2 x − 2 − 3 x − 12 2 x 2 − 6 x + 4 0 <displaystyle <frac <3x^<2>-18x+24><2x-2>>-<frac <3x-12><2x^<2>-6x+4>> , для чего ввести запрос solve (3x^2-18x+24)/(2x-2)-(3x-12)/(2x^2-6x+4) x ∈ ( − ∞ ; 2 ) ∪ ( 3 ; 4 ) <displaystyle xin (-<mathcal <infty >>;2)cup (3;4)> , в котором будет присутствовать точка 1, но при этом происходит деление на ноль. Сейчас эта ошибка исправлена.

Читайте также:  2160P yuv420 или 2160p rgb что лучше

Математика. Статистика & Анализ данных в Wolfram|Alpha

Вычисление интегралов и их применение — самая популярная на сегодня тема в блоге ”Wolfram|Alpha по-русски”.

В блоге ”Wolfram|Alpha по-русски” на тему интегралов существует отдельный раздел, который называется Интегральное исчисление.

Кроме теоретических аспектов интегрального исчисления, то есть собственно вычисления интегралов, существуют еще и практические, прикладные аспекты применения интегралов. Например, это вычисление площади фигуры, приближеннное вычисление «неберущихся» интегралов и другие, которые отнесены в раздел Прикладная математика.

Далее приводится список основных публикаций блога ”Wolfram|Alpha по-русски” на тему интегралов и их применения. А также на связанную с этим тему решения дифференциальных уравнений из раздела Дифференциальные уравнения.

Вот те публикации, на которые я хочу обратить ваше особое внимание. Здесь они расположены не в хронологическом порядке, а так, как я рекомендую их прочитать. Каждая из них заслуживает вашего внимания, поскольку раскрывает определенный аспект применения Wolfram|Alpha, как инструмента интегрирования:

  • Email
  • Twitter
  • FacebookShare via Facebook »
  • More.

Theme

Output Type

Output W />px

Output Height

To embed this widget in a post on your WordPress blog, copy and paste the shortcode below into the HTML source:

To embed this widget in a post, install the Wolfram|Alpha Widget Shortcode Plugin and copy and paste the shortcode above into the HTML source.

To embed a widget in your blog’s sidebar, install the Wolfram|Alpha Widget Sidebar Plugin, and copy and paste the Widget ID below into the "id" field:

To add a widget to a MediaWiki site, the wiki must have the Widgets Extension installed, as well as the code for the Wolfram|Alpha widget.

To include the widget in a wiki page, paste the code below into the page source.

Оцените статью
Добавить комментарий